UNESCO: AI and Next Generation of competences

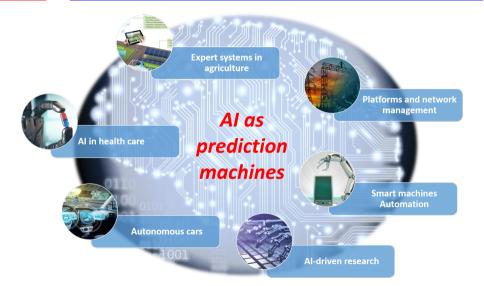
Human vs machine intelligence. What's at stake, really?

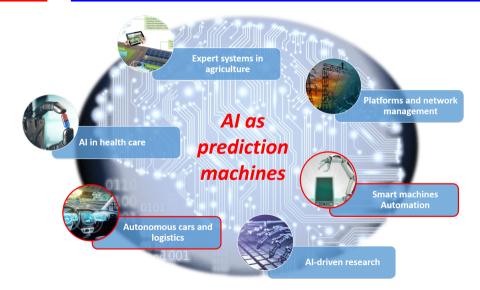
Ekkehard Ernst

11 & 12 July 2019

Øekkehardernsternste@ilo.org

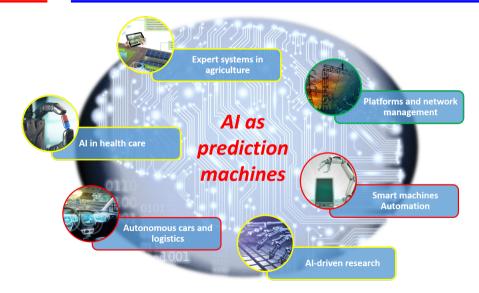
SOCIAL JUSTICE

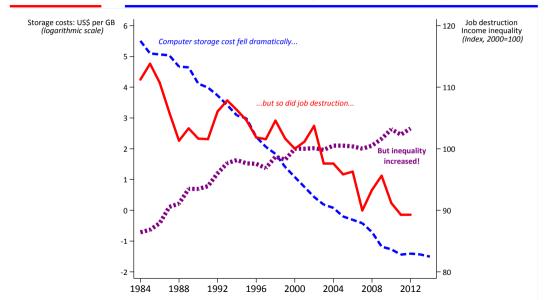

Should we be afraid of AI?


"Large neuronal networks today have a maximum of 1 million nodes but consume the energy of a nuclear power plant. The human brain has 84 billion neurons and runs on a slice of bread."

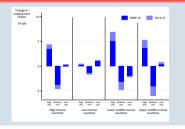
Chris Boos, AI expert and founder of Arago

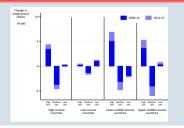
Examples of AI applications


Examples of AI applications: Labour saving

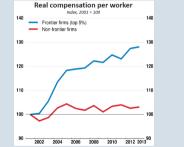

Examples of AI applications: Capital saving

Examples of AI applications: Factor enhancing

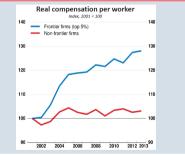

Al increases inequality, not unemployment



Job polarization



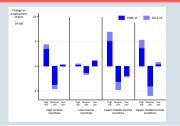
Job polarization

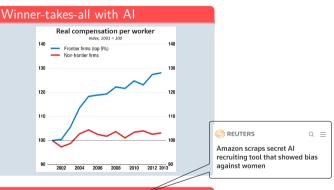


Rising demand for skills

Job polarization

Winner-takes-all with AI




Granular discrimination

- Enhances matching efficiency....
- ...but increases price discrimination
- and perpetuates historical biases

Job polarization

Granular discrimination

- Enhances matching efficiency....
 - ...but increases price discrimination
- and perpetuates historical biases

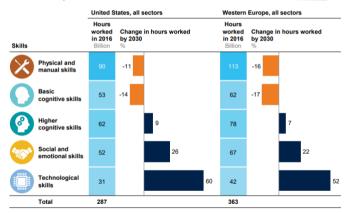
What about developing countries?

Dependent variable:	World		Developed		Developing	
Employment (in logs)			countries		countries	
robot stock	-0.055^{**}	-0.044^{**}	- 0.029 ***	-0.034^{***}	- 0.343 ***	-0.329
	(0.028)	(0.018)	(0.009)	(0.009)	(0.112)	(0.480)
robot stock $ imes$ labour intensity		-0.023		0.012		-0.011
		(0.044)		(0.019)		(0.411)
labour intensity	0.007	0.015	0.002	0.001	-0.016	-0.010
	(0.008)	(0.015)	(0.005)	(0.005)	(0.021)	(0.217)
N	477	477	360	360	117	117
R^2	0.84	0.85	0.80	0.80	0.35	0.38

Note: Regressions include country and industry fixed effects. Trends are the coefficients of regressions on a linear trend. Robust standard error in parentheses. Significance levels: *, **, * * * indicate significance at 0.10, 0.05 and 0.01. Controls: value added, wage. Estimates are weighted by sectoral employment in 2005.

Estimated equation:

$$N_{ij} = \beta_0 + \beta_1 \textit{robots}_{ij} + \beta_2 \textit{robots}_{ij} \times \textit{li}_{2005} + \beta_3 \textit{li}_{2005} + \beta_4 \textit{VA}_{ij} + \beta_5 \textit{W}_{ij} + u_{ij}.$$


Emotional intelligence trumps STEM

0

100

Automation and AI will accelerate the shift in skills that the workforce needs.

Based on McKinsey Global Institute workforce skills model

NOTE: Western Europe: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Italy, Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. Numbers may not sum due to rounding.

SOURCE: McKinsey Global Institute workforce skills model; McKinsey Global Institute analysis

New forms of taxation to ensure protection

Digital taxation

Move from income to consumption tax

Taxing public goods Sovereign wealth funds

Digital social security

Universal basic income or tax credit

Profit sharing arrangements Social partnership and cooperation

Maintaining level playing field

Public infrastructure to promote AI

Man vs machine: More than meets the eye

Structural transformation

...is a constant feature of our economies ...might bring more inequality

Preparing businesses

...prepare workforce to use digital technologies ...be aware of significant up-scaling costs

Al promises large productivity gains

...including in low-skilled sectors ...with strong boost for developing countries

AI transforms capitalism

...creates challenges for sharing wealth ...and requires international cooperation

Want to know more?

RESEARCH DEPARTMENT III WORKING PAPER NO. 34

Setting out for Digital Social Security