

United Nations Information Educational, Scientific and Programme Cultural Organization

Econophysic Approach: Update and Extensions

Dr. Wolfgang Baer

Richard Bergin

Dr. Thomas Housel

Ray Jones

Safe and Ethical Cyberspace, digital assets and risks: How to assess the intangible impacts of a growing phenomenon?

The World Conference on Intellectual Capital for Communities

UNESCO, June 14&15 2018

"The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government"

Value is the Problem

- Evaluating acquisition investments in defense (e.g., USA DoD) and governmental organizations do not have a nonmonetized, quantitative common units value parameter
- The value/cost ratio of acquisitions of information technology are problematic for this reason
- Most information technology applications have large amounts of embedded intellectual capital as well as risk
- The value added by embedded intellectual capital cannot be determined via traditional accounting and finance
- A new theory of value is required to account for this "missing value" phenomena

Economics to Physics Analogy: Progress IC9-IC13

Economics	Physics	IC 9 – IC 13
Value Concept: Non Monetized Value Protovalue: Potential or Perceived Satisfaction/ Cost Barriers Actual Value : Use or Work Value (WV)	Mass Potential Energy Kinetic Energy	IC 9 (2013): PEML: Potential Energy, Momentum, Location General Model using basic Energy to Value Analogy and IC/SC Value Model
Product/Service Complexity Proto Value (v2) - Product or Service Fit Matrix - Distance	Mass (v2) Total Potential Field/Energy (PE) Distance = radius between masses Velocity and Momentum	IC 10 (2014): Facebook, Google: Revenue, Adoption rate velocity examples
Proto-value Adoption Curves and Revenue Curves Producer Offerings, Customer needs	Action = ∆ Time * ∆ Energy	IC 11 (2015): WhatsApp example compared to competitor over one year adoption rate period
Satisfaction = Happiness Point of Sale: and Actual Use Vector Coordinate Space / Normalized Distance General Solution Space	Δ PE = Amount of Action Amount of Action: $\Delta A = \Delta$ PE * Δ Time $\Delta A = \Delta$ KE * Δ Time	IC 12 (2016): Protovalue of Mpesa (microfinance) for Kenyans compared to South Africans
Satisfaction Flow = Exchange RatePoint of Sale Satisfaction = : Δ Protovalue (PV BeforeExchange – PV After the Exchange)Rate of Adoption, Innovators and ImitatorsEffects of Advertising and Peer-to-Peer Messaging	 △ Energy = E△ Organized Potential Energy + △ Organized Kinetic Energy 	IC 13 (2017): Notional Smart Phone: Adoption Phases, Customer Segmentation, Market Saturation ABFE 2017: Notional Social Influence Sensitivity Analysis
Earned Value Management: Cost, Schedule, Performance, but not ROI Earned Value Management: Cost, Schedule, Performance, and risk and volatility but not ROI IC, Creativity	Mass, Distance (adapted to EVM parameters) Physical Economy Human Perception, Biases. Event/Process based need – satisfaction parameters Turbulance Modeling	15 th ARP Symposium EVM notional DoD Acquisition example IC 14 (2018): Modeling IC and creativity in DoD Acquisitions ABFE October 2018

Modeling Intellectual Capital and Creativity

Intellectual Capital for Communities In the Knowledge Economy

14

Step 1:

Build a simple equilibrium economy showing the flow of action in various forms as they progress in time through the economy and interfacing with Nature.

Fig. II-1 Mind and Body Model of a Customer-worker

Framework of Principles for developing Quantitative Calculations for Creativity and Intellectual Capital

Treat the Business Plan as a Program implemented by economic participants

Map the control interactions between the Business Plan and economic participants

Analyze the generation of Need signals and Business Plan updates in response

Observe development of new interactions with Nature as a source of creativity

Calculate the Complexity of the Business Plan in execution of action bits

Utilize the Quantum Physics analogy where Proto Value is calculated from $PV = \sum_{\underline{f,t}} \Psi_{\underline{f}} \bullet A^{\underline{f}}_{\underline{t}} \bullet \Psi^{t*}_{\underline{\Lambda}T}$

Where: $\Psi_{\underline{f}}$ are the expected and measurement signals, and "A" is the action structure of the Business Plan when implemented as a Computer Program

Conclusions and Next Steps

- The value of the IC embedded in IT acquisitions can be quantified in non-monetized parameters
- It is necessary to model the mental operations of acquisition, investment, organizational leaders and consumers, clients, users to understand how value is created from IC
- Doing so will allow the model to take into account decision maker mental biases as well as predict adoption rate and acquisition failures
- We need to integrate risk and volatility into the protovalue estimate within the non-profit Defense Acquisition program framework
- Next steps: identifying intellectual and creative inputs to consumer/work life plans via empirical work using acquisition case studies

Back – Up Slides

Physics to Economics Analogy Expansion: Definition of Terms:

Intellectual Capita for Communities In the Knowledge Economy

Kinetic Energy	KE	Actual rate of satisfaction
Work Energy	WE	Useful actual rate of satisfaction
		that fits a need
Potential Energy	PE	Potential rate of satisfaction, expected or
		hoped for satisfaction rate
Lagrangian Energy	(KE-PE)	Happiness, Difference between actual an hoped for rate of satisfaction. Positive values are pleasure. negative values are p
Hamiltonian Energy	H = KE + PE	Heaftiness, Total capacity of an econom entity (consumer or buainess)
Einstein Mass	m=H/c ²	Another term for identifying the concept Heftiness
Speed of light in vacuum	с	Speed of Now in equilibrium economy
A bit of Kinetic Action	KE·dt	a bit of Actual Satisfaction
A bit of Potential Action	PE·dt	a bit Potential Satisfaction, a Need bit
Macroscopic Action S	$=\int (KE -PE) \cdot dt$	Satisfaction for a tangibly large size activity
Minimum Action	δS=0	Minimum pain or maximum pleasure
June 2018	The World Conferen	ce on Intellectual Capital for Communities

"Physical Material only will only move along trajectories that minimize the action relative to alternative neighboring paths" "Economic entities will only engage in exchange sequences that maximize their pleasure relative to available alternatives."

9

Physics to Economics Analogy Expansion: Definition of Terms: (continued)

Intellectual Capital for Communities In the Knowledge Economy

Position vector of attributes	\mathbf{q}	Position of ownership in an
in a physical quantity		economic quantity
Momentum vector	$\mathbf{p}_{\mathbf{q}} = \mathrm{d}S/\mathrm{d}\mathbf{q}$	The rate of change of satisfaction when
		changing ones ownership of a
		quantity
Force in a quantity diection	$\mathbf{F}_{\mathbf{q}} = \mathbf{d}\mathbf{p}_{\mathbf{q}}/\mathbf{d}t$	The force felt by an economic entity when
		it feels the opportunity for changing
		its satisfaction by changing its
		ownership of a quantity
Equilibrium condition	$O = \sum_i \mathbf{F}_{qi}$	Vector sum of all forces of all quantities
		(qi) are zero
Unit vectors of quantities	u _q , u	Units of ownership (apples, dollars,)
Measurement of a physical	$\mathbf{q} = \#_{\mathbf{q}} \cdot \mathbf{u}_{\mathbf{q}}$	Measurement of an eqonomic
quantity		quantity
Generalized Physical space	x,y,z i	j,k Quantity type dimensions define
Dimensions of measurement		need, or product categories
Types		
Vectors in physical space	$\mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{q}_{\mathbf{z}} \dots \mathbf{q}_{\mathbf{f}}$	$q_i, q_j, q_k \dots$ Vectors in economic space
Maximum Quantity	$\mathbf{q}_{\mathbf{f},\mathbf{max}} = \mathbf{ma}$	x# _q ·u _q
- •		
Volume of physical space	q _{x,max} · q _{x.max}	x · q _{x,max} ··· q _{f,max}
	q _{i,max} · q _{j,max} ·	q _{k,max} q _{f,max} Volume of Economy
		- / ···································
A physical particle	[Name], [a],[b]] Economic entity

Rule: most economic or physical symbols can be augmented to refer to specific individuals, entities or symbols.

14th & 15th June 2018 = customer, \$ = money, B = busiess of to 20th effence on Intellectual Capital for Communities KE(C,\$) means the actual rate of satisfaction the customer receives from his money. KE(B,a) means the actual rate of satisfaction the business receives from his product which is in this example the apple

Phase I - Pre Product Introduction: Proto Value Mass: *iC* Multi-vector Coordinate System

Intellectual Capital for Communities In the Knowledge Economy

14

Unit of Analysis	Vector	Economics	Physics
Use Time (Hours, Minutes, Seconds, Milliseconds)	Length of vector is determined by the amount of use	Needs, General Product Solution Feature, and Actual Product Feature	Action * ∆ Time
Complexity, bits, Learning Time (unit of change or bits)	Length of vector is determined by the amount of time is takes an average person to learn how to complete a particular function or the number lines of code in a software program that could complete the same function	Common units of value	∆ Energy * ∆ Time

Phase I - Pre Product Introduction: Proto Value Fit: General Product Solution Transform to Product Feature Set iPhone Feature Set Example

Intellectual Capit for Communities In the Knowledge Economy

14

iC

week)

14th & 15th June 2018

The World Conference on Intellectual Capital for Communities - 14th Edition -

iC

Phase I - Pre Product Introduction: Proto Value Customer Need to General Product Solution Fitness Matrix: Smart Phone Platform Example:

Intellectual Capital for Communities In the Knowledge Economy

14

 $\mathbf{n}_i = \mathbf{H}_{i,i} \cdot \mathbf{s}_i$ Customer Need to Solution Satisfaction Function Calculation **Provider Solution Space** Customer Need Space Navigation (2) Navigation (2) ¦H_{i,j}∙s_j Browser (1) Browsing (1) **Customer Need Vectors General Product Solutions Fitness Matrix** Smart Phone (SP) WWW Browser 2.55 **Mobile Browse** 3 .27 .85 0 (Hours per week) (Hours per week) SP GPS/ Mapping (Hours 11.2 **Mobile Navigation** 16 .70 0 .15 per week) (Hours per week) Mobile Search 2.4 SP Intelligent Assistant (Hours per .60 4 .36 .64 (Hours per week) week)

The World Conference on Intellectual Capital for Communities - 14th Edition -

Physics/Economics Analogy History

Traditional and New Economics: Value Conflict and Opportunity

Value in Motion

Figure 1: Econophysics Model: How To Calculate Market Performance from Fundamental Parameters

- 14th Edition -

Table 1: Comprehensive Physics-EconomicsAnalogy

ECONOMICS

Proto- Value

Proto-Value = Satisfaction/Distance

Satisfaction is a need being satisfied

Happiness = rate at which satisfaction happens

Proto-Value = Potential Happiness

Distance = Barriers to Satisfaction

PHYSICS

Potential-Energy

Energy = Action/Time

Action is a change being made

Energy = rate of Action flowing

Potential Energy = potential rate of Action flow

Distance = Radius between masses

Amount of Satisfaction = Amount of Need * Need to Solution Function* Amount of Solution Amount of Distance = cost to purchase + time to use + Learning-time + infrastructure + ... Other ...

(Baer, Housel, and Bergin, 2016)

What's App example

What happens to What's App market share when they raise their service price from \$1 to \$7 to justify their high acquisition price?

Using our Econo-Physics Value Theoretical framework, we can predict the value of the "intangible" social network with the result that:

WhatsApp would loose its customer base after raising the price in an environment of comparable services, that are free, in spite of its first mover advantage

.0

Proto-value comparison On Day 361 after price goes to \$7 from \$1:

$$E[B,x] = .3 \bullet .5 \bullet 360/2.2 = Q_{f'}[B] \bullet K_{f',f'} \bullet q_{f}[x] / r^{\gamma}[B,x]$$

WhatsApp

iC

Economy

14

Intellectual Capital for Communities In the Knowledge

1 =	Q _f [B] the quantity of satisfaction	= 1
.5 =	$= q_{f'}[x]$ hrs/day the quantity of need	
	for messaging	
.99 =	K _{f'.f} the fit matrix	= .4
057 =	r ^y [B,x] Barrier Distance	= .0005
	(norm. work +operations hrs./day)	
<u>87</u> =	E[B,x] proto-valueenergy units	= <u>400</u>

Competitor

Dynamic changes

Fitness = # people a user wants and is able to access

Price = normalized work hours required to earn subscription

Table 5: Kenya vs South Africa

		<u>Kenya</u>	South Africa
•	Transaction fee	27 kes/tran	2 zar/tran
•	Baseline transaction cost without MPesa(wo MP)	40 min/tran	20 min/tran
•	MPesa Transaction per day	2x10 ⁶ tran/day	2x10 ⁵ tran/day
•	MPesa Tansaction Value per year	23x10 ¹² kes/yr	57x10 ⁹ Zar/yr
•	MPesa acceptance rate	58%	10%
•	Value of user's time	.116 kes/sec	.095 zar/sec
•	Perceived % Cash loss(wo M-P)	10%	1%
•	Average income/person	1700 \$/yr	9489 \$/yr
•	Not Acceptance Work around rate	90%	90%
•	Network and server availability rat	e 90%	90%
•	Proto-Value (local currency	803.6 kes/trans	12.3 zar/trans
•	Proto-Value (usd/trans)	7.9 usd/trans	. <u>86</u>
	The World Conference on Intellectu	al Capital for Communities	<u>usd/trans</u>

The World Conference on Intellectual Capital for Communities - 14th Edition -

Exchange Energy Protovalue Applied to Estimate Adoption Rate

• ta = time to total saturation

Note: 24 month time scale

The potential energy (protovalue) before the exchange is $PV_{before} = PV[C, M] + PV[B, P]$ The potential energy after the exchange is $PV_{after} = PV[C,P] + PV[B,M]$ The change in potential energy if the exchange happens is $PVx = Pv_{after} - Pv_{before}$ The more PV generated by an exchange the faster the exchange happens..

 $\Delta A / PVx = \Delta Tx$