

The Role of Intangible Capital in Global Value Chains

Sacha Wunsch-Vincent, WIPO Wen Chen, University of Groningen

Safe and Ethical Cyberspace, digital assets and risks:

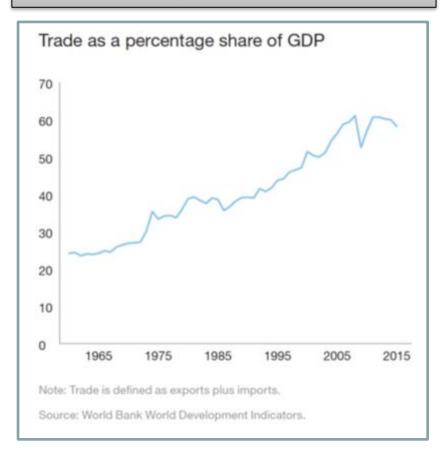
How to assess the intangible impacts of a growing phenomenon?

The World Conference on Intellectual Capital for Communities

UNESCO, June 14&15 2018

Smartphones - What drives retail price? What drives value-added *and* returns to intangible assets?

Coffee- What drives retail price? What drives value-added and returns to intangible assets?


Photo credit: https://www.which.co.uk/reviews/coffee-machines/article/how-to-buy-the-best-coffee-machine

Reconciling the evidence:

What drives value in «value-added»?

The rise of global value chains

The rise of intangible assets

WORLD
INTELLECTUAL PROPERTY
ORGANIZATION

Overview

1. The rise of global value chains (not treated)

2. Macro - What return accrues to intangible capital?

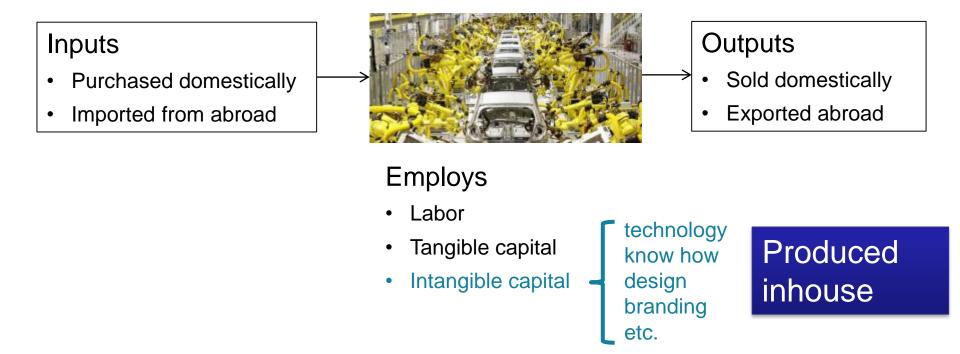
3. Micro - Case study – Smartphones

4. The role of Intellectual Property

Way Forward: A measurement and policy agenda

2. Macro: What return accrues to intangible capital?

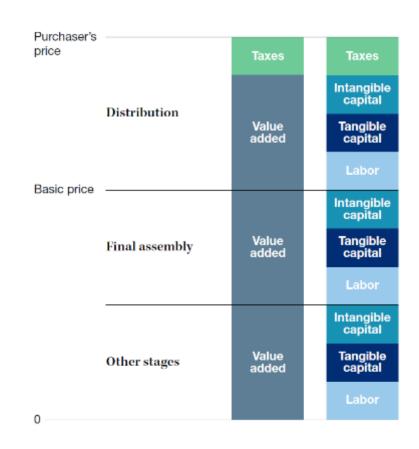
Chapter 1 of World IP Report and "Measuring the income to intangibles in goods production: a global value chain approach" WIPO Economic Research Working Paper No. 36 Wen Chen, Reitze Gouma, Bart Los, Marcel P. Timmer | 2017



Background / Motivation

- Two emerging strands of literature: Intangibles & GVC
- The intangibles literature focuses on the measurement issue and role of intangible capital in productivity and economic growth (e.g. CHS, 2005; 2009)
- The GVC literature emphasizes on the fragmentation of production processes and the fact that countries start to specialize in tasks and business functions rather than specific products (e.g. Gereffi, 1999; Baldwin & Venables, 2013; Timmer et al., 2014)

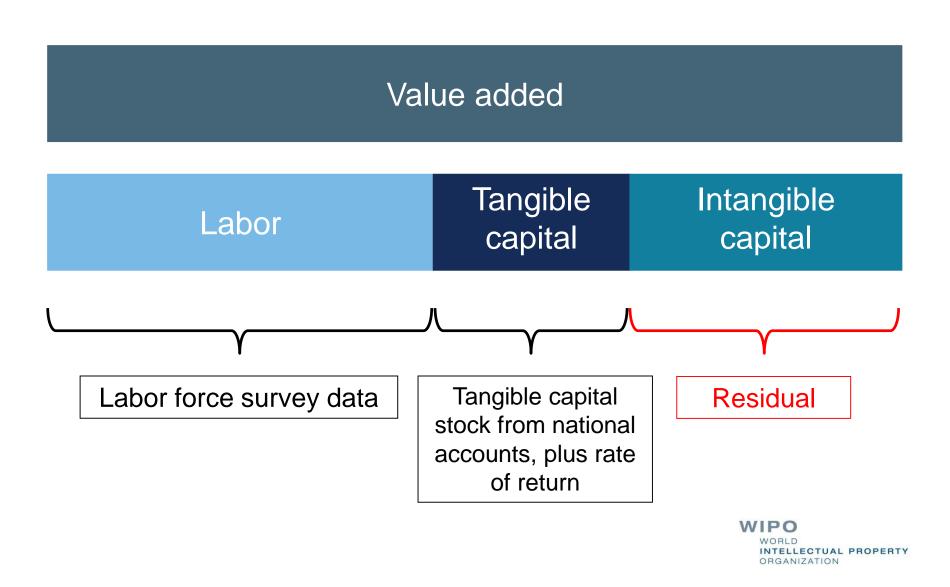
What return accrues to intangible capital? Value added as starting point



Value added = value of outputs – value of inputs
Intangibles create value out of tangible factor inputs

WORLD
INTELLECTUAL PROPERTY

New framework to measure returns to intangibles at macro-level


- Database on value added by Groningen University (Marcel Timmer):
 - Based on national accounts, input-output tables and international trade statistics
 - ➤ 19 manufacturing value chains, around one-quarter of global output

intangible capital is "yeast" that creates value from labour and purchased assets

How to measure returns to intangibles?

The GVC Approach

Follow the GVC approach introduced by Los, Timmer and de Vries (Journal of Regional Science, 2015)

$$g = \hat{\mathbf{v}}(\mathbf{I} - \mathbf{A})^{-1} \cdot \mathbf{F}$$

	Intermediate use			Final use			Total
	(S columns per country)			(C columns per country)			
	1		Ν	1		Ν	
S Industries, country 1	${\bf Z}^{11}$	$\mathbf{Z}^{1.}$	\mathbf{Z}^{1N}	F ¹¹	F ^{1.}	\mathbf{F}^{1N}	\mathbf{X}^1
	$\mathbf{Z}^{.1}$	Z	$\mathbf{Z}^{\mathcal{N}}$	F.1	F	$\mathbf{F}^{.N}$	X.
S Industries, country N	\mathbb{Z}^{N1}	\mathbf{Z}^{N} .	\mathbf{Z}^{NN}	\mathbf{F}^{N1}	\mathbf{F}^{N} .	\mathbf{F}^{NN}	\mathbf{X}^N
Value added	$(w^1)'$	$(\mathbf{w}^2)'$	$(\mathbf{w}^N)'$				
Output	$(\mathbf{X}^1)'$	$(\mathbf{X}^2)'$	$(\mathbf{X}^N)'$				

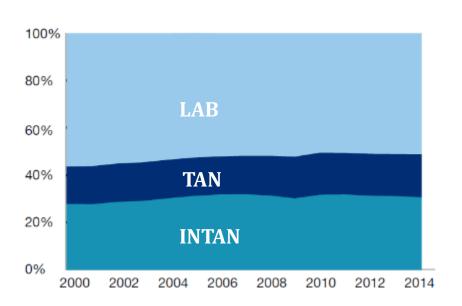
g is the vector of value added created in each of the country-industry pairs involved in a value chain

The GVC Approach

An Accounting Framework for Global Value Chains

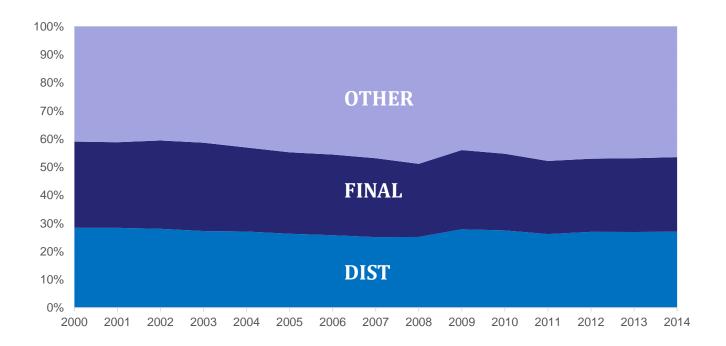
			Final products of a global value chain, identified by country and industry of completion					Value		
		Country 1		Country M		M	added			
			Industry		Industry		Industry		Industry	
			1		N	•••	1		N	
Value added	Country 1	Industry 1					\perp			
from country-										
industries		Industry N								

participating in		Industry 1								
global value	Country M									
chains		Industry N								
Total final	Total final output value									World GDP


Note: Cell values represent the value added generated in the country-industry given in the row, within the global value chain corresponding to the country-industry of completion given by the column.

Strong role of intangible income in GVCs

- Share of intangible income increased rapidly since 2000, levelling off post 2008, standing at 31% in 2014
- Returns to intangibles are twice returns to tangible assets, and increasing


Intangible capital accounts for one-third

Intangible incomes by stages of production

1/4 of intangibles income realised in distribution stage, 1/4 in final production stage and 1/2 in other production stages

Returns by product group

Income shares by manufacturing product group, 2014

Product group name	Intangible income share (%)	Tangible income share (%)	Labor share (%)	Global output (USD bn)
Food, beverages, and tobacco products	31,0	16.4	52,6	4,926
Motor vehicles and trailers	29.7	19.0	51.3	2,559
Textiles, apparel and leather products	29.9	17.7	52.4	1,974
Other macrimery and equipment	27.2	18.8	53.9	1,834
Computer, electronic and optical products	31.3	18.6	50.0	1,452

Product group name Food, beverages, and tobacco products Motor vehicles and trailers		Intangible share		Globa	Global output (USD bn)		
		31.0)	4,926			
		29.7	,	2,559			
Textiles, apparel and leather prod	lucts	29.9)	_	1,974		
Paper products	28.0	20.9	51.1	140			
Other non-metallic mineral products	29.7	21.5	48.9	136			
Wood products	27.5	20.0	52.5	90			
Printing products	27.1	21.2	51.7	64			

Source: Chen et al. (2017).

3. Micro - Case study – Smartphones

Chapter 4 of World IP Report and "Intangible assets and value capture in global value chains: the smartphone industry", WIPO Economic Research Working Paper No. 41 Jason Dedrick, Kenneth L. Kraemer | 2017

Smartphones: what's inside the box?

How to arrive at the value capture estimate

Smartphone retail price

 Cost of materials in decreasing order of cost: touchscreen display, application processor, enclosure, camera and baseband processor...

Assembly and other labor costs

Distribution costs

= Value capture or gross profits

One critical measurement challenge is that IP payments are not explicitly captured – some are embedded.

Key intangible assets: cutting edge technology, hardware and software design, brand reputation and image

Teardown reports, IP experts, research team (Prof. Jason Dedrick and Prof. Ken Kraemer).

Samsung Galaxy S7

Cost of materials 23%

Distribution and retail

20%

Other

23%

Samsung's value capture

34%

Apple iPhone 7

Cost of materials $\mathbf{22}\%$

Distribution and retail

15%

Other

21%

Apple's value capture

42%

Huawei P9

Cost of materials 20%

Distribution and retail 15%

Other

23%

Huawei's value capture

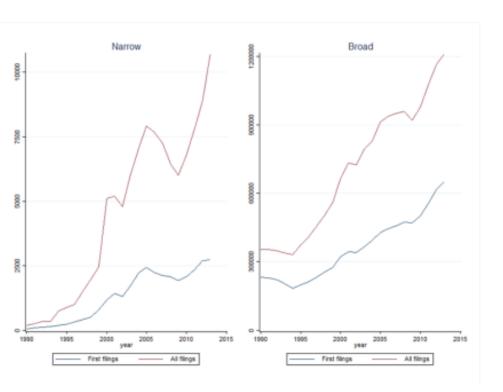
42%

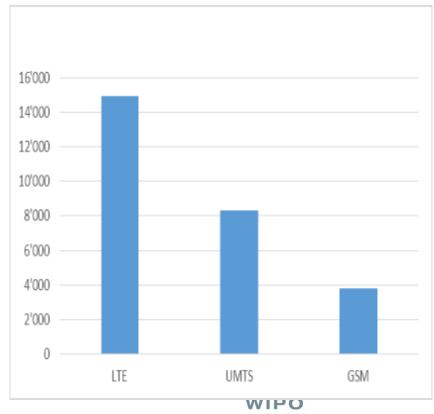
Comparison of value capture for premium phone models in 2016

Smartphone model	Global average sales price (USD)	Value capture/ margin (%)	Value capture/ gross profit (USD per phone)	Worldwide shipments (units shipped in 2016)	Total 2016 value capture/gross profits (USD bn)
Apple iPhone 6	748	42	314	199,614,814	62.4
Apple iPhone 7	809	42	339	15,871,584	5.4
Apple total					67.8
Samsung Galaxy 6	732	34	248	52,892,898	13.1
Samsung Galaxy S7	708	34	240	35,701,806	8.6
Samsung total					21.7
Huawei P8	298	42	125	15,418,859	1.9
Huawei P9	449	42	188	9,986,811	1.9
Huawei total					3.8

Sources: Dedrick and Kraemer (2017) based on IHS Markit teardown report.

4. The role of Intellectual Property

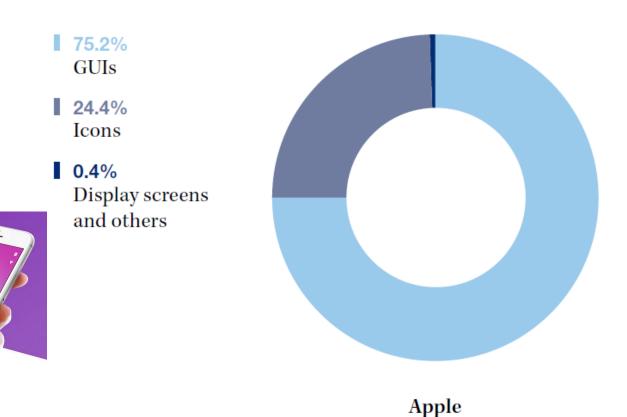

Key intangible assets: cutting edge technology, hardware and software design, brand reputation and image (reputational assets versus technology)



The number of smartphone patent filings is large and growing

First filings and all filings worldwide for smartphone-related patents, 1990-2013

Smartphone standard-essential patents are on the rise in fourth-generation mobile tech



INTELLECTUAL PROPERTY

ORGANIZATION

GUIs and icons represent the largest share of smartphone industrial designs

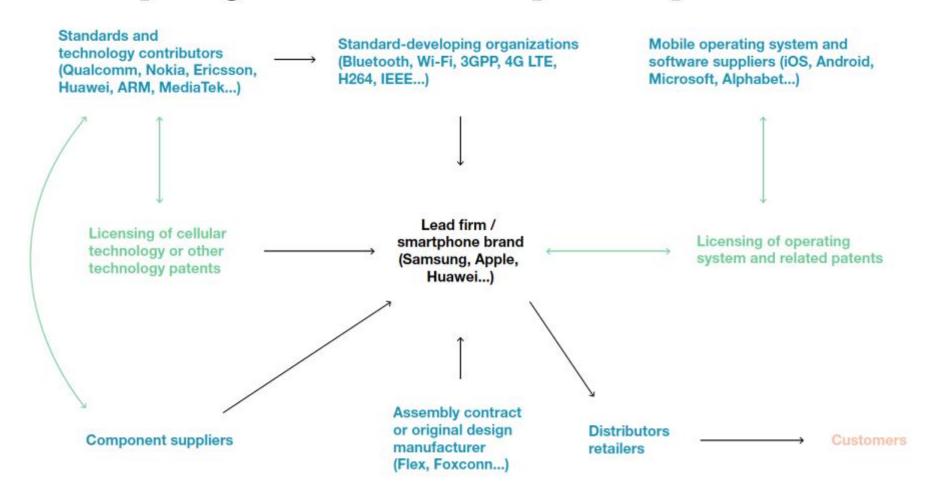
Share of industrial designs ("design patents") registered at the USPTO by selected companies for different smartphone elements, 2007-2015

Interaction of value capture and IP

AND: Too early to discount secrecy

Actors make extensive use of full spectrum of IP rights.

Despite high correlation between value capture and use of IP, a specific value contribution by selected IP assets is hard to provide.


IP is only a source of advantage when combined with complementary assets

ROPERTY

The role of IP — intricate and more of bargaining asset than tool of pure exclusivity

In most circumstances, IP protection is a crucial element of a firm's knowledge management strategy.

- Firms take IP for time-bound exclusivity.
- Collaboration and Specialization
 - IP helps firms in transferring technologies within the supply chain; facilitates outsourcing
 - Firms openly share or license knowledge assets, partly to encourage adoption of new technologies and partly to obtain access to technology.
 - Through cross-licensing arrangements, companies negotiate access to technologies

Note: Black lines represent the flow of parts or components through the value chain, green lines the licensing of technology and IP.

important enabler of collaboration

/IPO
WORLD
INTELLECTUAL PROPERTY
ORGANIZATION

Perspectives on technological learning and intangibles

- Firms in catch-up economies acquire knowledge
 - ✓ through reverse-engineering
 - ✓ access to knowledge assets by importing capital goods
 - ✓ movement of skilled personnel

Intellectual Property

- Partnerships between GVC lead firms and catch-up firms entail the transfer of knowledge
 - Firms associated with assembly operations such as Foxconn have created their own technological edge.
 - transfer of relevant non-codified knowledge.
- Public patent records offer rich knowledge source
- Brand acquisitions and licensing reputational assets.

Way Forward: A measurement and policy agenda

Future measurement agenda (see also Timmer paper)

- Macro: international stats initiatives are steps in the right direction. (OECD TiVa, UNECE and SEIGA initiative)
 - Increase the focus on intangible asset & value-added interaction in these GVC projects (open black box).
 - Knowledge of global intangible asset value chains is confidential and complex – needs special expertise
- In other fora, attention is to the measurement of intangible investment; there should also be focus on returns.

Open issues:

- Based on large product groups (with much heterogeneity)
- > attribution of returns in a GVC to particular industries
- Quality of the databases (with strong modelling assumptions)

Future measurement agenda (see also Timmer paper)

- Broad concept of intangible capital **residual***value of final product MINUS costs of all tangible factors
- Micro: teardown reports are useful starting point

Open issues:

- > Equating profit/value capture to return of intangibles
- ➤ Only crude estimates of publicly available intangible asset payments (leads to overestimating returns in case third-party IP in use)
- ➤ More data required on IP transactions BY PRODUCT
- Profit-shifting as part of tax minimization strategies

Reconciling the notions of IP and intangible assets

Intangible assets

Table 1. Intangible Capital Asset Types Included in Asset type National Accounts? Computerized information 1. Software Yes 21 2. Databases Innovative property 3. Mineral exploration Yes Satellite for some² 4. R&D (scientific) EU-yes, US-no³ 5. Entertainment and artistic originals 6. New product/systems in financial services No 7. Design and other new product/systems No Economic competencies 8. Brand equity a. Advertising No b. Market research No 9. Firm-specific resources a. Employer-provided training No b. Organizational structure No

Intellectual property

Table 1: Knowledge investment and different forms of intellectual property rights

Investment type	Patent	Copyright	Industrial design	Trademark
R&D	X		Х	
Software development	X	X	Х	
Design	Х	Х	Х	X
Creative outputs		X	X	
Market research & advertising		х		х

Special Theme Section of the World IP Indicators Report 2012 on "The rise of Design in Innovation", http://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_2 http://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_2 http://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_2

Way forward: Policy agenda

Stagnant trade-to-GDP ratio: are there diminished opportunities for value chains to spread further?

- Strong concentration of IP still in selected few locations
 - What benefits moving up the value ladder?

Balance of IP benefits (pecuniary and strategic) towards complexity of enforcement and litigation costs

What will future role of IP be and what shall world institutions do to facilitate?

Thank you!

References

- WIPO World IP Report 2017, http://www.wipo.int/publications/en/details.jsp?id=4225&plang=EN
- Measuring the income to intangibles in goods production: a global value chain approach, WIPO Economic Research Working Paper No. 36, Wen Chen, Reitze Gouma, Bart Los, Marcel P. Timmer |2017
- Intangible assets and value capture in global value chains: the smartphone industry, WIPO Economic Research Working Paper No. 41 Jason Dedrick, Kenneth L. Kraemer | 2017
- SEE FOR PAPERS: http://www.wipo.int/publications/en/details.jsp?id=4225&plang=EN

