United Nations Educational, Scientific and Cultural Organization
in the Knowledg Economy

An Econophysics Value Theory: Extension of the Original Model

Dr. Wolfgang Baer
Dr. Thomas Housel
Richard Bergin (PhD Candidate)

Information and Knowledge for All:
Towards an Inclusive Innovation

The World Conference on Intellectual Capital for Communities
UNESCO, July 3\&4 2017

Basic Econophysics Model Extensions for the Smart Phone Market

- Basic model
- Econophysics analogy 2016-2017
- Extensions of the prior model to adoption rate curves:
- Calculating Protovalue
- Notional example of smart phone adoption rates
- Innovators and Imitators adopter models
- Implications for use of the model with actual data

Figure 1: Econophysics Model: How To Calculate Market Performance from Fundamental Parameters

Diagram 2: Mass and Gravity Analogy

Economics	Physics
Protovalue: Useful Potential Value / Cost Barriers) Work Energy: Use or Work Value	Organized Potential Energy Organized Kinetic Energy
Exchange Energy Point of Sale: Δ in Protovalue (PV_{a} After Exchange $-P V_{b}$ Before the Exchange) Definition: $\begin{aligned} & P V_{b}=P V_{p}+W V_{s} \\ & P V_{a}=W V_{p}+P V_{s} \end{aligned}$	Δ Energy = Organized Potential Energy + Organized Kinetic Energy. Note: Surrogate Kinetic Energy is \$
Satisfaction $=$ Exchange Rate Point of Sale: Satisfaction = Expected Exchange Energy (E_{x}) * Length of Time in Hours Actual Satisfaction $=$ Actual Exchange Energy $\left(E_{x}\right)$ * Length of Time in hours.	Amount of Action: Action $=$ Energy ${ }^{*} \Delta$ Time $\Delta \mathrm{A}=\Delta \mathrm{PE} * \Delta$ Time $\Delta \mathrm{A}=\Delta \mathrm{KE} * \Delta$ Time

Table 1: Econophysics Concepts Match (2016)

ECONOMICS
ProtoValue
ProtoValue Ratio = Satisfaction/Distance
Satisfaction is a need being satisfied
Happiness = rate at which satisfaction happens

Proto-Value $=$ Potential Happiness
Distance $=$ Barriers to Satisfaction

PHYSICS

Potential Energy
Energy = Action/Time
Action is a change being made
Energy = rate of Action flowing

Potential Energy = potential rate of Action flow

Distance = Radius between masses

[^0]
Definition of Terms: Analogy Physics-Economics (2017)

Definition of Terms: Analogy Between Physics and Psycho-Economics:	
Kinetic Energy KE	Actual rate of satisfaction
Work Energy WE	Useful actual rate of satisfaction
	that fits a need
Potential Energy PE	Potential rate of satisfaction, expected or
	hoped for satisfaction rate
Lagrangian Energy (KE-PE)	Happiness, Difference between actual and hoped for rate of satisfaction. Positive values are pleasure. negative values are pain
Hamiltonian Energy $\quad \mathbf{H}=\mathrm{KE}+\mathrm{PE}$	Heaftiness, Total capacity of an economic entity (consumer or buainess)
Einstein Mass m=H/c ${ }^{2}$	Another term for identifying the concept of Heftiness
Speed of light in vacuum c	Speed of Now in equilibrium economy
A bit of Kinetic Action KE•dt	a bit of Actual Satisfaction
A bit of Potential Action PE•dt	a bit Potential Satisfaction, a Need bit
Macroscopic Action $\quad \mathrm{S}=\int(\mathrm{KE}-\mathrm{PE}) \cdot \mathrm{dt}$	Satisfaction for a tangibly large size activity
Minimum Action $\quad \delta S=0$	Minimum pain or maximum pleasure
Principle	Principle

"Physical Material only will only move along trajectories that minimize the action relative to alternative neighboring paths"
"Economic entities will only engage in exchange sequences that maximize their pleasure relative to available alternatives."

Definition of Terms: Analogy Physics--Economics (continued)

Position vector of attributes	q Position of ownership in an
in a physical quantity	economic quantity
Momentum vector	$\begin{gathered} \mathbf{p}_{\mathbf{q}}=\mathrm{dS} / \mathrm{dq} \quad \text { The rate of change of satisfaction when } \\ \text { changing ones ownership of a } \\ \text { quantity } \end{gathered}$
Force in a quantity diection	$\begin{aligned} & \mathbf{F}_{\mathbf{q}}=\mathrm{d} \mathbf{p}_{\mathbf{q}} / \mathrm{dt} \quad \text { The force felt by an economic entity when } \\ & \text { it feels the opportunity for changing } \\ & \text { its satisfaction by changing its } \\ & \text { ownership of a quantity } \end{aligned}$
Equilibrium condition	$O=\sum_{i} F_{q i} \quad \begin{gathered} \text { Vector sum of all forces of all quantities } \\ (q i) \text { are zero } \end{gathered}$
Unit vectors of quantities	$\mathbf{u q}_{\mathbf{q}}, \mathbf{u}$ (Units of ownership (apples, dollars,..)
Measurement of a physical	$\mathbf{q}=\#_{q} \cdot \mathbf{u}_{\mathbf{q}} \quad$ Measurement of an eqonomic
quantity	quantity
Generalized Physical space	$x, y, z \quad i, j, k \quad$ Quantity type dimensions define
Dimensions of measurement	need, or product categories
Types	
Vectors in physical space	
Maximum Quantity	$\underline{\text { qf,max }}=\max ^{(1)}{ }_{\mathbf{q}} \cdot \mathbf{u}_{\mathbf{q}}$
A physical particle	[Name], [a],[b] Economic entity

Rule: most economic or physical symbols can be augmented to refer to specific individuals, entities or symbols. For example if $C=$ customer,$\$=$ money, $B=$ business, $a=$ apple then
$K E(C, \$)$ means the actual rate of satisfaction the customer receives from his money.
$K E(B, a)$ means the actual rate of satisfaction the business receives from his product which is in this example the apple

Phases of Adoption

ntellectual Capita for Communities In the Know Economy

Phase	Economics	Physics
Pre Product Introduction Phase I	Protovalue: Useful Potential Value / Cost Barriers)	Organized Potential Energy (PE)
Innovator Phase II - Point of Sale and Actual Use - Satisfaction = Exchange Rate	Exchange Energy Point of Sale: Δ in Protovalue (PV_{a} After Exchange $P V_{b}$ Before the Exchange) Definition: $\begin{gathered} P V_{b}=P V_{p}+W V_{\$} \\ P V_{a}=W V_{p}+P V_{\$} \end{gathered}$ Point of Sale: Satisfaction = Expected Exchange Energy (E_{x}) * Length of Time in Hours Actual Satisfaction = Actual Exchange Energy $\left(\mathrm{E}_{\mathrm{x}}\right)$ * Length of Time in hours.	Δ Energy $=$ Organized Potential Energy + Organized Kinetic Energy. Note: Surrogate Kinetic Energy is \$ Amount of Action: Action $=$ Energy * Δ Time $\Delta \mathrm{A}=\Delta \mathrm{PE} * \Delta$ Time $\Delta \mathrm{A}=\Delta \mathrm{KE} * \Delta$ Time
Imitator Phase III - Point of Sale and Actual Use - Satisfaction = Exchange Rate	Point of Sale: Satisfaction = Expected Exchange Energy (E_{x}) derived from innovator actual use or WV * Length of Time in Hours Actual Satisfaction = Actual Exchange Energy $\left(\mathrm{E}_{\mathrm{x}}\right)$ * Length of Time in hours.	Amount of Action: Action $=$ Energy * Δ Time $\Delta A=\Delta P E * \Delta$ Time $\Delta A=\Delta K E * \Delta$ Time

Phase I - Pre Product Introduction: Proto Value Smart Phone Platform Feature Set Example

Physics Analogy Equation for PE

$$
\mathrm{PE}=\Sigma_{\mathrm{i}, \mathrm{j}}^{\mathrm{mj} \cdot \mathrm{Gji} \cdot \mathrm{Mi}} \frac{\mathrm{Rji}}{}
$$

Proto Value Matrix Calculation

$$
P V=\Sigma_{i, j} n_{i} G_{i j} \cdot s_{j}=\sum_{i, j, k} n_{i} \cdot\left(H_{i, j} \cdot F_{j, k}\right) / D_{i k} \cdot f_{k}
$$

Consumer Need Space Solution Space
Product Feature Space

Solution Vector
$\mathrm{s}_{\mathrm{j}}=\mathrm{Mj}$

Product Vector

$$
\mathrm{f}_{\mathrm{k}}=\mathrm{M}_{\mathrm{k}}
$$

Exchange Energy: Innovators

The perceived energy (protovalue) before the exchange $P V_{\text {before }}=P V[C, M]+P V[B, P]$

PV[B, P] = value the business assigns to the ownership of its product

$\operatorname{PV}[B, M]$ = value the business assigns to the ownership of the customers money

Exchange Energy Protovalue Applied to Estimate Adoption Rate

The potential energy (protovalue) before the exchange is

$$
P V_{\text {before }}=P V[C, M]+P V[B, P]
$$

The potential energy after the exchange is

$$
P V_{\text {after }}=P V[C, P]+P V[B, M]
$$

The change in potential energy if the exchange happens is

$$
P V x=P v_{\text {after }}-P v_{\text {before }}
$$

The more PV generated by an exchange the faster the exchange happens..

$$
\Delta A / P V x=\Delta T x
$$

- ta $=$ time to total saturation

PVx = 100 ta $=24$ months

$$
\text { PVx }=150 \text { ta=16 months }
$$

$$
\text { PVx }=200 \text { ta }=12 \text { months }
$$

[^1]
Phase II - Innovator: Adoption Curve-Smart Phone Platform Example

iC

13 new users/month:

Intellectual Capital
for Communities In the Knowledge

Formula $\left(1-\operatorname{Cos} .\left(E_{x} * t * 2 \pi / h\right){ }^{*} k_{u}\right.$
\# of new users (t):
Formula $\mathrm{t}-\left(\mathrm{h} /\left(\mathrm{E}_{\mathrm{x}} * 2 \pi\right) * \sin .\left(\mathrm{E}_{\mathrm{x}} * \mathrm{t} * 2 \pi / \mathrm{h}\right)\right) * \mathrm{k}_{\mathrm{u}}$

- $\mathrm{E}_{\mathrm{x}}=$ Exchange Energy
- $\mathrm{t}=$ Time in months

-new users/month -TH of new users (t)
- $\mathrm{h}=(\mathrm{Ex}) * \mathrm{ta}$
- $\mathrm{k}_{\mathrm{u}}=\mathrm{n} / \mathrm{ta}$
- ta = time to total saturation
- $\mathrm{n}=$ total population of users

Smart Phone Platform Example
 Assumptions

- $\mathrm{E}_{\mathrm{x}}=100 \mathrm{PV}\left(\mathrm{E}_{\mathrm{x}}\right)$ or Exchange Energy
- time intervals $=0,3,6,12,18,21$, and 24 months
- ta $=24$ months to achieve full saturation
- $\mathrm{n}=25,0000$ users

Phase III - Imitator: Adoption Curve-Smart Phone Platform Example

new users/month:

Formula ($\left.1-\operatorname{Cos} .\left(E_{x} * t * 2 \pi / h\right)\right)^{*} k_{u}$

\# of new users (t):

Formulat-($\left.\mathrm{h} /\left(\mathrm{E}_{\mathrm{x}} * 2 \pi\right) * \sin .\left(\mathrm{E}_{\mathrm{x}} * \mathrm{t} * 2 \pi / \mathrm{h}\right)\right) * \mathrm{k}_{\mathrm{u}}$

- $\mathrm{E}_{\mathrm{x}}=$ Exchange Energy
- $\mathrm{t}=$ Time in months

- $\mathrm{h}=(\mathrm{Ex})^{*}$ ta
- $\mathrm{k}_{\mathrm{u}}=\mathrm{n} / \mathrm{ta}$
- ta = time to total saturation
- $\mathrm{n}=$ total population of users

Smart Phone Platform Example
 Assumptions

- $\mathrm{E}_{\mathrm{x}}=75 \mathrm{PV}\left(\mathrm{E}_{\mathrm{x}}\right)$ or Exchange Energy
- time intervals $=0,4,8,16,24,28$, and 32 months
- ta $=32$ months
- $\mathrm{n}=975,000$ users

$$
\begin{array}{|l}
\hline \text { Calculations: New users/month } \\
\mathrm{t}=0 ;(1-\operatorname{Cos} .((75 * 0 * 2 \pi) / 2400)) * 975,000 / 32=0 \\
\mathrm{t}=4 ;(1-\operatorname{Cos} .((75 * 4 * 2 \pi) / 2400)) * 975,000 / 32=8,8836 \\
\mathrm{t}=8 ;(1-\operatorname{Cos} .((75 * 8 * 2 \pi) / 2400)) * 975,000 / 32=30,469 \\
\mathrm{t}=16 ;(1-\operatorname{Cos} .((75 * 16 * 2 \pi) / 2400)) * 975,000 / 32=60,938 \\
\mathrm{t}=24 ;(1-\operatorname{Cos} .((75 * 24 * 2 \pi) / 2400)) * 975,000 / 32=30,469 \\
\mathrm{t}=28 ;(1-\operatorname{Cos} .((75 * 28 * 2 \pi) / 2400)) * 975,000 / 32=8,836 \\
\mathrm{t}=32 ;(1-\operatorname{Cos} .((75 * 32 * 2 \pi) / 2400)) * 975,000 / 32=0 \\
\hline
\end{array}
$$

Calculations: \# of new users (t)

$$
\begin{aligned}
& \mathrm{t}=0 ; 0-(2400 /(75 * 2 \pi)) * \sin .((75 * 0 * 2 \pi) / 2400)) * 975,000 / 32=0 \\
& \mathrm{t}=4 ; 4-(2400 /(75 * 2 \pi)) * \sin .((75 * 4 * 2 \pi) / 2400)) * 975,000 / 32=11,822 \\
& \mathrm{t}=8 ; 8-(2400 /(75 * 2 \pi)) * \sin .(75 * 8 * 2 \pi) / 2400)) * 975,000 / 32=88,481 \\
& \mathrm{t}=16 ; 16-(2400 /(75 * 2 \pi)) * \sin .((75 * 16 * 2 \pi) / 2400)) * 975,000 / 32=487500 \\
& \left.\mathrm{t}=24 ; 24-(2400 /(75 * 2 \pi)) * \sin .\left(\left(75 * 24^{*} 2 \pi\right) / 2400\right)\right) * 975,000 / 32=886,519 \\
& \mathrm{t}=28 ; 28-(2400 /(75 * 2 \pi)) * \sin .((75 * 28 * 2 \pi) / 2400)) * 975,000 / 32=963,422 \\
& \mathrm{t}=32 ; 32-(2400 /(75 * 2 \pi)) * \sin .((75 * 32 * 2 \pi) / 2400) * 975,000 / 32=975,000
\end{aligned}
$$

. Implications for Introduction of Fintech in Japan

- Results of the analysis could be used to make feature level adoption rate predictions pre-product introduction and during the innovator customer segment adoption period to better predict imitator adoption rates
- Useful for:
- Determining pace of build out and architecture of micro finance platform and network requirements(e.g., number of servers, support techs, COTS based user interface and devices), etc...
- Creating advertising campaign based on need vectors
- Selecting geographic areas for introduction
- With the extremely high penetration rate of smart phones in Japan, the country is ripe for broader adoption of Fintech

iC
 ـ Back Up Slides
 Intellectual Capita
 for Communities

Economy

Phase I - Pre Product Introduction: Proto Value Mass: Multi-vector Coordinate System

Unit of Analysis	Vector	Economics	Physics
Use Time (Hours, Minutes, Seconds, Milliseconds)	Length of vector is determined by the amount of use	Needs, General Product Solution Feature, and Actual Product Feature	Action * Δ Time
Complexity, bits, Learning Time (unit of change or bits)	Length of vector is determined by the amount of time is takes an average person to learn how to complete a particular function or the number lines of code in a software program that could complete the same function	Common units of value	Δ Energy * Δ Time

Phase I-Pre Product Introduction: Proto Value

 Fit: General Product Solution Transform to Product Feature Set iPhone Feature Set Example

Intellectual Capita for Communities in the Knowledge Economy

General Product Solution

Phase I - Pre Product Introduction: Proto Value Customer Need to General Product Solution Fitness Matrix: Smart Phone Platform Example

Customer Need to Solution Satisfaction Function Calculation $\mathbf{n}_{\mathrm{i}}=\mathrm{H}_{\mathrm{i}, \mathrm{j}} \cdot \mathrm{s}_{\mathrm{j}}$ Customer Need Space

Provider Solution Space

Customer Need Vector

Mobile Browse (Hours per week)

Mobile Navigation (Hours per week)

Mobile Search (Hours per week)
$\left(\begin{array}{c}3 \\ 16 \\ 4\end{array}\right) \bullet\left(\begin{array}{ccc}\text { Fitness Matrix } \\ .85 & .27 & 0 \\ 0 & .7 & .15 \\ .64 & 0 & \\ .36 & .60\end{array}\right)$

General Product Solution

\(\left.\left.\binom{2.55}{11.2} $$
\begin{array}{l}\text { Smart Phone (SP) WWW } \\
\text { Brower (Hours per week) }\end{array}
$$\right\} \begin{array}{l}SP GPS/ Mapping

(Hours per week)\end{array}\right\}\)| SP Intelligent Assistant |
| :--- |
| (Hours per week) |

Phase I - Pre Product Introduction: Proto Value Distance: Smart Phone Platform Example

$D_{i, j}=$ The distance-barrier is in general a matrix that defines the cost required for any product feature " k " to satisfy a need type "i"
Distance is the time required to locate (search cost), acquire (acquisition cost), learn how to implement (learning time cost), and infrastructure use (support and maintenance costs) for a general product solution and a particular product feature set.

Cost (days 0-30) / days $31-60$	Vector 1: iPhone Map App (Navigate)	Vector 2: : iPhone Siri App (Search)	Vector 3: : iPhone Safari Web Browser (Browse)
Search (Locate Product)		1 hour $/ 0$ hours	

Assumption: Acquisition and Use Costs in hours can be calculated using an average hourly wage of \$\$26.22 (US Department of Labor - Bureau of Labor Statistics May 2017). As an example an $\$ 800$ Smart Phone would equal approximately 31 hours acquisition cost. Consider that most phones sold are bundled with cellular / data services and are charged out in a monthly basis over a 24 month contract.
For a typical product feature set, distance is estimated for the first $\mathbf{3 0}$ days of use and then again for next $\mathbf{3 0}$ days of use to account for adjustments in search and acquisition costs.

3rd \& 4th July 2017

Proto Value Matrix Calculation $=\boldsymbol{\Sigma}_{\mathrm{i}, \mathrm{j}, \mathrm{k}} \mathrm{n}_{\mathrm{i}} \bullet\left(\mathrm{H}_{\mathrm{i}, \mathrm{j}} \cdot \mathrm{F}_{\mathrm{j}, \mathrm{k}}\right) / \mathrm{D}_{\mathrm{ik}} \bullet \mathrm{f}_{\mathrm{k}}$
(Consumer Mass) $n_{i}=$ need vector components
(Fit) $\mathrm{H}_{\mathrm{i}, \mathrm{j}}=$ the need to solution space fitness fit matrix normalized for Distance
Where: (Fit) $\mathrm{F}_{\mathrm{j}, \mathrm{k}}=$ the product feature to solution space fit matrix normalized for Distance
(Product Mass) $\mathrm{f}_{\mathrm{j}, \mathrm{k}}=$ the product feature vector component
nv = Need vector
gpsv = General Product Solution vector
d = Distance for each General Solution vector

Consumer Need Navigation x hours	$n v 1$ * pgsv1 /d1 nv1 * gpsv2 /d1 nv1 * gpsv3/d1	Gen. Product Sol Navigation x hours
Consumer Need Search x hours	$n v 2$ * pgsv1 /d2 nv2 * gpsv2 /d2 nv2 * gpsv3/d2	Gen. Product Sol. Search x hours
Consumer Need Browse x hours	nv3 *gpgsv1 /d3 nv3 * gpsv2 /d3 nv3 * gpsv3/d3	Gen. Product Sol. Browse x hours

Phase I - Pre Product Introduction: Proto Value Calculating Protovalue: Smart Phone Platform Example

Proto Value Matrix Calculation $=\Sigma_{i, j, k} n_{i} \bullet\left(H_{i, j} \bullet F_{j, k}\right) / D_{i k} \bullet f_{k}$		
Consumer Need Browsing (1) x hours	nv1 * pgsv1 /d1 nv1 * gpsv2 /d1 nv1 *gpsv3/d1	Gen. Product Sol Navigation x hours
Consumer Need Navigation (v2) x hours	nv2 * pgsv1 /d2 nv2 *gpsv2 /d2 nv2 * gpsv3/d2	Gen. Product Sol. Search x hours
Consumer Need Search (3) x hours	nv3 *gpgsv1 /d3 nv3 * gpsv2 /d3 nv3 *gpsv3/d3	Gen. Product Sol. Browse x hours

(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (16*.27/4.25) + (4*0/4.25)= 4.13 Proto-value (PE)
(Vector 2) Navigation : 11.2 hours * $\left(3^{*} 0 / 4.75\right)+\left(16^{*} .7 / 4.75\right)+\left(4^{*} .15 / 4.75\right)=27.85$ Proto-value (PE)
(Vector 3) Search: 2.4 hours * (3*.64/4.25) + (16*.36/4.25) + (4*.60/4.25)=5.68 Proto-value (PE)
Total Product Pre-Introduction Proto-Value Day 0-30=37.66 Proto-value (PE)
Assumption: The General Product Solution vectors represent an idealized General Product Solution space and can be mapped directly to a particular customer need space. The actual product feature set space is transformed and mapped, using a fit matrix, to the General Product Solution Space.

Phase II - Innovator Purchase and Use: Exchange

 Actual Use: Smart Phone Platform ExampleInnovator actual use generates Work Value (WV) or Kinetic Energy. This newly generated WV is used to calculate PV when the Customer Use vectors are adjusted for actual use. When innovator WV, or KE, is greater or less than Pre-Product Introduction PE then the level of Action is expected to increase or decrease the resulting activity or adoption rate.

```
Protovalue Calculation: Innovator Point of Sale
(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (16*.27/4.25) + (4*0/4.25 )= 4.131 Proto-value (PE)
(Vector 2) Navigation : 11.2 hours * (3*0/4.75) + (16*.7/4.75) + (4*.15/4.75) = 27.85 Proto-value (PE)
(Vector 3) Search: 2.4 hours * (3*.64/4.25) + (16*.36/4.25) + (4*.60/4.25)= 5.7 Proto-value (PE)
Total Product Pre-Introduction Proto-Value Day 0-30=37.66 Proto-value (PE)
```

```
Protovalue Calculation: Innovator Actual Use
```

Protovalue Calculation: Innovator Actual Use
(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (24*.27/4.25) + (6*0/4.25) = 5.42 Proto-value (KE))
(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (24*.27/4.25) + (6*0/4.25) = 5.42 Proto-value (KE))
(Vector 2) Navigation : 11.2 hours * (3*0/4.75) + 24*.7/4.75) + (6*.15/4.75) = 41..77 Proto-value (KE))
(Vector 2) Navigation : 11.2 hours * (3*0/4.75) + 24*.7/4.75) + (6*.15/4.75) = 41..77 Proto-value (KE))
(Vector 3) Search: 2.4 hours * (3*.64/4.25) + (24*.36/4.25) + (6*.60/4.25) = 5.95 Proto-value (KE))

```
(Vector 3) Search: 2.4 hours * (3*.64/4.25) + (24*.36/4.25) + (6*.60/4.25) = 5.95 Proto-value (KE))
```

Total Product Pre-Introduction Proto-Value Day 0-30=53.68 Proto-value (KE)
In this example, innovator actual use (KE) of Navigation and Search was higher than expected use at Point of Sale or PE and would result in higher energy and resulting action over time.
$\Delta A=\Delta(P E+K E) * \Delta$ Time

iC
 Phase II - Innovator Purchase and Use: Exchange Point of Sale: Smart Phone Platform Example

During Phase II - "Innovator Acquisition and Use", the level of activity or action can be predicted based on a change in perceived value or Proto-Value (PV) which results from an exchange.

- PV[C, P] = value customer assigns to the ownership of the Smart Phone
- PV[C, M] = value customer assigns to the ownership of his money
- $\mathbf{P V}[\mathbf{B}, \mathbf{P}]=$ value the business assigns to the ownership of a Smart Phone
- $\mathbf{P V}[\mathbf{B}, \mathbf{M}]=$ value the business assigns to the ownership of the customers money

The potential energy (protovalue) before the exchange is

$$
P V_{\text {before }}=P V[C, M]+P V[B, P]=37.66 * 2=75.32
$$

The potential energy after the exchange is
$P V_{\text {after }}=P V[C, P]+P V[B, M]=100+75.32=175.32$ (We added 100 with the general assumption that the customer and the producer believes that they are better off by 50 more units of Protovalue)

The change in potential energy if the exchange happens is

$$
P V x=P v_{\text {after }}(175.32)-P v_{\text {before }}(75.32)
$$

$$
P V x=100
$$

The more PV generated by an exchange the faster the exchange happens..

$$
\Delta \mathrm{A} / \mathrm{PVx}=\Delta \mathrm{Tx}
$$

3rd \& 4th July 2017
\& 4th July 2017 the Point of Sale we consider Proto Value as Potential Energy from the Physics Analogy. This is due to the fact that the customer

Phase III - Imitator Purchase and Use: Exchange Point of Sale: Smart Phone Platform Example

Imitator Point of Sale PV or PE considers how unevenly distributed actual innovator use of general product solution space vectors, or observed change in KE, moderates imitator customer need vectors and resulting PV or PE.

```
Protovalue Calculation: Innovator Actual Use
(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (24*.27/4.25) + (6*0/4.25) = 5.42 Proto-value (KE))
(Vector 2) Navigation : 11.2 hours * (3*0/4.75) + (24*.7/4.75) + (6*.15/4.75) = 41.77 Proto-value (KE))
(Vector 3) Search: 2.4 hours * (3*.64/4.25) + (24*.36/4.25) + (6*.60/4.25) = 5.95 Proto-value (KE))
```

Total Product Pre-Introduction Proto-Value Day 0-30=53.68 Proto-value (KE)
In this example, innovator actual use (KE) of Navigation (24 hours KE versus 16 hours PE) and Search (6 hours KE versus 4 hours PE) determines the customer vector lengths in hours for imitator Point of Sale.

```
Protovalue Calculation: Imitator Point of Sale
Total Product Pre-Introduction Proto-Value Day 0-30=53.68 Proto-value (KE)
```

Assumption: For this example we assume that no changes in product features and resulting changes in General Product Solution space vectors were made after observing actual use. In many cases a producer will make additional investment in a product feature set that seek to reduce distance based on observed innovators behaviors and feedback

Phase III - Imitator Purchase and Use: Exchange Point of Sale: Smart Phone Platform Example

Intelectual capital During Phase III - "Imitator Acquisition and Use", the level of activity or action can be predicted based on a change in perceived value or Proto-Value (PV) which results from an exchange.

- PV[C, P] = value customer assigns to the ownership of the Smart Phone
- $\mathbf{P V}[\mathbf{C}, \mathbf{M}]=$ value customer assigns to the ownership of his money
- PV[B, P] = value the business assigns to the ownership of a Smart Phone
- $\mathbf{P V}[\mathbf{B}, \mathbf{M}]=$ value the business assigns to the ownership of the customers money

The potential energy (protovalue) before the exchange is

$$
P V_{\text {before }}=P V[C, M]=53.68+P V[B, P]=53.68
$$

The potential energy after the exchange is

$$
P V_{\mathrm{after}}=P V[C, P]=91.18+P V[B, M]=91.18
$$

The change in potential energy if the exchange happens is

$$
\begin{aligned}
& P V x=P v_{\text {after }}(182.36)-P v_{\text {before }}(107.36) \\
& P V x=75
\end{aligned}
$$

The more PV generated by an exchange the faster the exchange happens..

$$
\Delta \mathrm{A} / \mathrm{PVx}=\Delta \mathrm{Tx}
$$

Assumption: At the Point of Sale for the imitator customer segment we consider imitator actual use, or kinetic energy, when determining PV before the exchange. PV after the exchange is the result of innovator influence on imitator perceived value of PVx for a given product solution space.
3rd \& 4th July 2017

Diagram 1: Calculating Proto Value: MPesa Case

Physics Analogy Equation for PE $\mathrm{PE}=\Sigma_{\mathrm{i}, \mathrm{j}}^{\mathrm{mj} \cdot \mathrm{Gij} \cdot \mathrm{Mi}} \mathrm{Rji}$
Proto Value Matrix Calculation $P V=\sum_{i, j} \cdot n_{D} \cdot H_{i j} \cdot s_{j}=\Sigma_{i, j, k} n_{i} \cdot H_{i, j} \cdot F_{j, k} \cdot f_{k} / D_{i k}$

Consumer Need Space
 vector

$$
\mathbf{n}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}}
$$

Provider Solution Space

IF-Usability
Solution Vector
$S_{j}=M_{j}$

Product Solution Function

$$
s_{j}=F_{j, k} \bullet f_{k}
$$

Product Feature Space

[^0]: Amount of Satisfaction = Amount of Need * Need to Solution Function* Amount of Solution

[^1]: Note: 24 month time scale

