

An Econophysics Value Theory: Extension of the Original Model

Dr. Wolfgang Baer

Dr. Thomas Housel Richard Bergin (PhD Candidate)

Information and Knowledge for All: *Towards an Inclusive Innovation*

The World Conference on Intellectual Capital for Communities

UNESCO, July 3&4 2017

"The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government"

Basic Econophysics Model Extensions for the Smart Phone Market

- Basic model
 - Econophysics analogy 2016-2017
- Extensions of the prior model to adoption rate curves:
 - Calculating Protovalue
 - Notional example of smart phone adoption rates
 - Innovators and Imitators adopter models
- Implications for use of the model with actual data

Figure 1: Econophysics Model: How To Calculate Market Performance from Fundamental Parameters

Fundamental Attributes Update Attributes Feedback **Estimate Compare** Measure **Customer Emotions** Customer Needs Customer Engagement Customer Capabilities **Product Price** Calculate Estimate Adoption rate Market Product features **ProtoValue** Performance Product design Parameters Manufacturing cost Market size Advertising/ sales cost Competition **Initial estimates**

3rd & 4th July 2017

iC

13

Intellectual Capital for Communities In the Knowledge Economy

iC

Economics to Physics Analogy

Economics	Physics
Protovalue: Useful Potential Value / Cost Barriers) Work Energy: Use or Work Value	Organized Potential Energy
	Organized Kinetic Energy
Exchange Energy Point of Sale: Δ in Protovalue (PV _a After Exchange	Δ Energy = Organized Potential Energy + Organized Kinetic Energy.
– PV _b Before the Exchange)	
	Note: Surrogate Kinetic Energy is \$
Definition: $PV_b = PV_p + WV_{\$}$ $PV_a = WV_p + PV_{\$}$	
Satisfaction = Exchange Rate	Amount of Action:
	Action = Energy * Δ Time
Point of Sale: Satisfaction = Expected Exchange Energy (E _x) * Length of Time in Hours Actual Satisfaction = Actual Exchange Energy (E _x)	$\Delta A = \Delta PE * \Delta Time$
* Length of Time in hours.	$\Delta A = \Delta KE * \Delta Time$

Table 1: Econophysics Concepts Match (2016)

ProtoValue Ratio = Satisfaction/Distance Satisfaction is a need being satisfied Happiness = rate at which satisfaction happens

ECONOMICS

ProtoValue

Proto-Value = Potential Happiness

Distance = Barriers to Satisfaction

PHYSICS

Potential Energy

Energy = Action/Time

Action is a change being made

Energy = rate of Action flowing

Potential Energy = potential rate of Action flow

Distance = Radius between masses

Amount of Satisfaction = Amount of Need * Need to Solution Function* Amount of Solution

Definition of Terms: Analogy Physics–Economics (2017)

iC
Intellectual Capital for Communities In the Knowledge Economy

Definition of Terms:	Analogy Betw	veen Physics and Psycho-Economics:
Kinetic Energy	KE	Actual rate of satisfaction
Work Energy	WE	Useful actual rate of satisfaction that fits a need
Potential Energy	PE	Potential rate of satisfaction, expected or hoped for satisfaction rate
Lagrangian Energy	(KE- PE)	Happiness , Difference between actual and hoped for rate of satisfaction. Positive values are pleasure. negative values are pain
Hamiltonian Energy	H = KE + PE	Heaftiness, Total capacity of an economic entity (consumer or buainess)
Einstein Mass	m=H/c ²	Another term for identifying the concept of Heftiness
Speed of light in vacuum	с	Speed of Now in equilibrium economy
A bit of Kinetic Action	KE·dt	a bit of Actual Satisfaction
A bit of Potential Action	PE·dt	a bit Potential Satisfaction, a Need bit
Macroscopic Action S	$=\int (KE - PE) \cdot dt$	Satisfaction for a tangibly large size activity
Minimum Action Principle	δS=0	Minimum pain or maximum pleasure Principle

"Physical Material only will only move along trajectories that minimize the action relative to alternative neighboring paths" "Economic entities will only engage in exchange sequences that maximize their pleasure relative to available alternatives."

3rd & 4th July 2017

Definition of Terms: Analogy Physics--Economics (continued)

Intellectual Capital for Communities In the Knowledge Economy

Position vector of attributes	q	Position of ownership in an
in a physical quantity		economic quantity
Momentum vector	$\mathbf{p}_{\mathbf{q}} = \mathrm{d}\mathbf{S}/\mathrm{d}\mathbf{q}$	The rate of change of satisfaction when changing ones ownership of a quantity
Force in a quantity diection	$\mathbf{F}_{\mathbf{q}} = d\mathbf{p}_{\mathbf{q}}/dt$	The force felt by an economic entity when it feels the opportunity for changing its satisfaction by changing its ownership of a quantity
Equilibrium condition	$0 = \sum_i \mathbf{F}_{qi}$	Vector sum of all forces of all quantities (qi) are zero
Unit vectors of quantities	u _q ,u	Units of ownership (apples, dollars,)
Measurement of a physical	$\mathbf{q} = \#_{\mathbf{q}} \cdot \mathbf{u}_{\mathbf{q}}$	Measurement of an eqonomic
quantity		quantity
	•	
Generalized Physical space		j,k Quantity type dimensions define
Dimensions of measurement	· · · · · · · · · · · · · · · · · · ·	need, or product categories
Types		
Vectors in physical space	$\mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{q}_{\mathbf{z}} \dots \mathbf{q}_{\mathbf{f}}$	$\mathbf{q}_{i}, \mathbf{q}_{j}, \mathbf{q}_{k} \dots$ Vectors in economic space
Maximum Quantity	$\mathbf{q}_{\mathbf{f},\mathbf{max}} = \mathbf{max}$	x# _q ∙ u _q
Volume of physical space	q _{x,max} · q _{x,max}	· q _{x,max} ··· q _{f,max}
q _{i,max} · q _{j,max} · q _{k,max} ··· q _{f,max} Volume of Economy		
A physical particle	[Name], [a],[b]	Economic entity

Rule: most economic or physical symbols can be augmented to refer to specific individuals, entities or symbols.

For example if C = customer, \$ = money, B = business, a = apple then

KE(C,\$) means the actual rate of satisfaction the customer receives from his money.

KE(B,a) means the actual rate of satisfaction the business receives from his product which is in this example the apple

3rd & 4th July 2017

Phases of Adoption

Phase	Economics	Physics
Pre Product Introduction Phase I	Protovalue: Useful Potential Value / Cost Barriers)	Organized Potential Energy (PE)
Innovator Phase II • Point of Sale and Actual Use	Exchange Energy Point of Sale: Δ in Protovalue (PV _a After Exchange – PV _b Before the Exchange)	∆ Energy = Organized Potential Energy + Organized Kinetic Energy.
	Definition: $PV_b = PV_p + WV_{\$}$ $PV_a = WV_p + PV_{\$}$	Note: Surrogate Kinetic Energy is \$
 Satisfaction = Exchange Rate 	Point of Sale: Satisfaction = Expected Exchange Energy (E_x) * Length of Time in Hours Actual Satisfaction = Actual Exchange Energy (E_x) * Length of Time in hours.	Amount of Action: Action = Energy * Δ Time $\Delta A = \Delta PE * \Delta$ Time
	5	$\Delta A = \Delta KE * \Delta Time$
Imitator Phase III • Point of Sale and Actual Use	Point of Sale: Satisfaction = Expected Exchange Energy (E_x) derived from innovator actual use or WV * Length of Time in Hours	Amount of Action: Action = Energy * Δ Time $\Delta A = \Delta PE * \Delta$ Time
• Satisfaction = Exchange Rate	Actual Satisfaction = Actual Exchange Energy (E_x) * Length of Time in hours.	$\Delta A = \Delta KE * \Delta Time$

Phase I - Pre Product Introduction: Proto Value Smart Phone Platform Feature Set Example

Exchange Energy: Innovators

Exchange Energy Protovalue Applied to Estimate Adoption Rate

The potential energy (protovalue) before the exchange is $PV_{before} = PV[C, M] + PV[B, P]$ The potential energy after the exchange is $PV_{after} = PV[C,P] + PV[B,M]$ The change in potential energy if the exchange happens is $PVx = Pv_{after} - Pv_{before}$ The more PV generated by an exchange the faster the exchange happens.. $\Delta A/PVx = \Delta Tx$

• ta = time to total saturation

Note: 24 month time scale

Phase II – Innovator: Adoption Curve--Smart Phone Platform Example

iC

new users/month:

Intellectual Capital for Communities In the Knowledge Economy

13

Formula (1 – Cos. ($E_x * t * 2\pi/h$))* k_u

of new users (t): Formula t - (h/($E_x * 2\pi$) * sin. ($E_x * t * 2\pi/h$)) * k_u

- $E_x = Exchange Energy$
- t = Time in months
- h = (Ex) * ta
- $k_u = n / ta$
- ta = time to total saturation
- n = total population of users

Smart Phone Platform Example Assumptions

- $E_x = 100 PV(E_x)$ or Exchange Energy
- time intervals = 0, 3, 6, 12, 18, 21, and 24 months
- ta = 24 months to achieve full saturation
- n = 25,0000 users

3rd & 4th July 2017

Calculations: new users/month

t = 0; (1-Cos. $(100 * 0 * 2\pi / 2400)$) * 25,000/24 = 0 t = 3; (1-Cos. $(100 * 3 * 2\pi / 2400)$) * 25,000/24 = 302 t = 6; (1-Cos. $(100 * 6 * 2\pi / 2400)$) * 25,000/24 = 1,041 t = 12; (1-Cos. $(100 * 12 * 2\pi / 2400)$) * 25,000/24 = 2,083 t = 18; (1-Cos. $(100 * 18 * 2\pi / 2400)$) * 25,000/24 = 1,041 t = 21; (1-Cos. $(100 * 21 * 2\pi / 2400)$) * 25,000/24 = 302 t = 24; (1-Cos. $(100 * 24 * 2\pi / 2400)$) * 25,000/24 = 0

Calculations: # of new users (t)

t = 0; 0 - (3.83 * sin.(100 * 0 * 2π /2400)) * 25,000/24 = 0 t = 3; 3 - (3.82* sin.(100 * 3 * 2π /2400)) * 25,000/24 = 302 t = 6; 6 - (3.82* sin.(100 * 6 * 2π /2400)) * 25,000/24 = 2,270 t = 12; 12- (3.82 * sin.(100 * 12 * 2π /2400)) * 25,000/24 = 12,500 t = 18; 18 - (3.82* sin.(100 * 18* 2π /2400)) * 25,000/24 = 22,729 t = 21; 21 - (3.82* sin.(100 * 21 * 2π /2400)) * 25,000/24 = 24,697 t = 24; 24 - (3.82 * sin.(100 * 24 * 2π /2400)) * 25,000/24 = 25,000

Phase III – Imitator: Adoption Curve--**Smart Phone Platform Example**

new users/month:

Intellectual Capita for Communities In the Knowledge Economy

13

Formula $(1 - \cos (E_x * t * 2\pi/h)) * k_{\mu}$

of new users (t): Formula t - $(h/(E_x * 2\pi) * sin. (E_x * t * 2\pi/h)) * k_u$

- E_v = Exchange Energy
- t = Time in months
- h = (Ex) * ta
- k, = n / ta
- ta = time to total saturation
- n = total population of users

Smart Phone Platform Example Assumptions

- E_v = 75 PV(E_v) or Exchange Energy
- time intervals = 0, 4, 8, 16, 24, 28, and 32 months
- ta = 32 months
- n = 975,000 users

3rd & 4th July 2017

	Calculations: New users/month
	t = 0; (1-Cos.((75 * 0 * 2 π) /2400)) * 975,000/32 = 0
	t = 4; (1-Cos. ((75 * 4 * 2 π) /2400)) * 975,000/32 = 8,8836
	t = 8; (1-Cos. ((75 * 8 * 2 π) /2400)) * 975,000/32 = 30,469
	t = 16; (1-Cos. ((75 * 16 * 2 π) /2400)) * 975,000/32 = 60,938
	t= 24; (1-Cos. ((75 * 24 * 2 π) / 2400)) * 975,000/32 = 30,469
	t = 28; (1-Cos. ((75 * 28 * 2 π) /2400)) * 975,000/32 = 8,836
	t= 32; (1-Cos. ((75 * 32 * 2 π) /2400)) * 975,000/32 = 0
Calculatio	ns: # of new users (t)
t = 0; 0 – (240	00/(75 * 2π)) * sin.((75 * 0 * 2π) /2400)) * 975,000/32 = 0
t = 4; 4 – (240	00/(75 * 2π)) * sin.((75 * 4 * 2π) /2400)) * 975,000/32 = 11,822
t = 8; 8 – (240	00/(75 * 2 π)) * sin.(75 * 8 * 2 π) /2400)) * 975,000/32 = 88,481

t = $t = 8; 8 - (2400/(75 * 2\pi)) * sin.($ $t = 16; 16 - (2400/(75 * 2\pi)) * sin.((75 * 16 * 2\pi)/2400)) * 975,000/32 = 487500$

 $t = 24; 24 - (2400/(75 * 2\pi)) * sin.((75 * 24 * 2\pi) / 2400)) * 975,000/32 = 886,519$ $t = 28; 28 - (2400/(75 * 2\pi)) * sin.((75 * 28 * 2\pi) / 2400)) * 975,000/32 = 963,422$ $t = 32; 32 - (2400/(75 * 2\pi)) * sin.((75 * 32 * 2\pi)/2400) * 975,000/32 = 975,000$

Implications for Introduction of Fintech in Japan

- Results of the analysis could be used to make feature level adoption rate predictions pre-product introduction and during the innovator customer segment adoption period to better predict imitator adoption rates
- Useful for:
 - Determining pace of build out and architecture of micro finance platform and network requirements(e.g., number of servers, support techs, COTS based user interface and devices), etc...
 - Creating advertising campaign based on need vectors
 - Selecting geographic areas for introduction
- With the extremely high penetration rate of smart phones in Japan, the country is ripe for broader adoption of Fintech

Phase I - Pre Product Introduction: Proto Value Mass: Multi-vector Coordinate System

Unit of Analysis	Vector	Economics	Physics
Use Time (Hours, Minutes, Seconds, Milliseconds)	Length of vector is determined by the amount of use	Needs, General Product Solution Feature, and Actual Product Feature	Action * Δ Time
Complexity, bits, Learning Time (unit of change or bits)	Length of vector is determined by the amount of time is takes an average person to learn how to complete a particular function or the number lines of code in a software program that could complete the same function	Common units of value	Δ Energy * Δ Time

Phase I - Pre Product Introduction: Proto Value Fit: General Product Solution Transform to Product Feature Set iPhone Feature Set Example

3rd & 4th July 2017

iC

13

Intellectual Capital for Communities

In the Knowledge Economy

Phase I - Pre Product Introduction: Proto Value Customer Need to General Product Solution Fitness Matrix: Smart Phone Platform Example

Phase I - Pre Product Introduction: Proto Value Distance: Smart Phone Platform Example

D_{i,j} = The distance-barrier is in general a matrix that defines the cost required for any product feature "k" to satisfy a need type "i"

Distance is the time required to locate (search cost), acquire (acquisition cost), learn how to implement (learning time cost), and infrastructure use (support and maintenance costs) for a general product solution and a particular product feature set.

Cost (days 0 – 30) / days 31-60	Vector 1: iPhone Map App (Navigate)	Vector 2: : iPhone Siri App (Search)	Vector 3: : iPhone Safari Web Browser (Browse)
Search (Locate Product)		1 hour / 0 hours	
Acquisition		1.25 hours / 1.25 hours	
Use Cost (Device)	1 hour / .1 hours	.5 hour / .1 hours	.5 hour / .1 hours
Use Cost (Service Provider)		1.5hours / 1.5 hours	

Assumption: Acquisition and Use Costs in hours can be calculated using an average hourly wage of \$\$26.22 (US Department of Labor – Bureau of Labor Statistics May 2017). As an example an \$800 Smart Phone would equal approximately 31 hours acquisition cost. Consider that most phones sold are bundled with cellular / data services and are charged out in a monthly basis over a 24 month contract.

For a typical product feature set, distance is estimated for the first 30 days of use and then again for next 30 days of use to account for adjustments in search and acquisition costs.

3rd & 4th July 2017

Phase I - Pre Product Introduction: Proto Value Calculating Protovalue: Smart Phone Platform Example

	Proto Value Matrix Calculation = $\Sigma_{i,j,k}$	$\mathbf{h}_{i} \bullet (\mathbf{H}_{i,j} \bullet \mathbf{F}_{j,k}) / \mathbf{D}_{ik} \bullet \mathbf{f}_{k}$	
$ \begin{array}{ll} & (Consumer Mass) \ n_i = need \ vector \ components \\ & (Fit) \ H_{i,j} = the \ need \ to \ solution \ space \ fit \ matrix \ normalized \ for \ Distance \\ & (Fit) \ F_{j,k} = the \ product \ feature \ to \ solution \ space \ fit \ matrix \ normalized \ for \ Distance \\ & (Product \ Mass) \ f_{j,k} = the \ product \ feature \ vector \ component \\ & nv = Need \ vector \\ & gpsv = General \ Product \ Solution \ vector \\ & d = Distance \ for \ each \ General \ Solution \ vector \end{array} $			
Consumer Need Navigation x hours	 nv1 * pgsv1 /d1	Gen. Product Sol Navigation x hours	
Consumer Need Search x hours	nv2 * pgsv1 /d2	Gen. Product Sol. Search x hours	
Consumer Need Browse x hours	nv3 *gpgsv1 /d3 nv3 * gpsv2 /d3 nv3 * gpsv3/d3	Gen. Product Sol. Browse x hours	

3rd & 4th July 2017

Phase I - Pre Product Introduction: Proto Value Calculating Protovalue: Smart Phone Platform Example

Proto Value Matrix Calculation = $\sum_{i,j,k} n_i \cdot (H_{i,j} \cdot F_{j,k}) / D_{ik} \cdot f_k$

Consumer Need Browsing (1) x hours		Gen. Product Sol Navigation x hours
Consumer Need Navigation (v2) x hours	nv2 * pgsv1 /d2	Gen. Product Sol. Search x hours
Consumer Need Search (3) x hours	nv3 *gpgsv1 /d3 nv3 * gpsv2 /d3 nv3 * gpsv3/d3	Gen. Product Sol. Browse x hours

(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (16*.27/4.25) + (4*0/4.25)= 4.13 Proto-value (PE) (Vector 2) Navigation : 11.2 hours * (3*0/4.75) + (16*.7/4.75) + (4*.15/4.75)= 27.85 Proto-value (PE) (Vector 3) Search: 2.4 hours * (3*.64/4.25) + (16*.36/4.25) + (4*.60/4.25)= 5.68 Proto-value (PE) Total Product Pre-Introduction Proto-Value Day 0 - 30 = 37.66 Proto-value (PE)

Assumption: The General Product Solution vectors represent an idealized General Product Solution space and can be mapped directly to a particular customer need space. The actual product feature set space is transformed and mapped, using a fit matrix, to the General Product Solution Space.

3rd & 4th July 2017

Phase II – Innovator Purchase and Use: Exchange Actual Use: Smart Phone Platform Example

Innovator actual use generates Work Value (WV) or Kinetic Energy. This newly generated WV is used to calculate PV when the Customer Use vectors are adjusted for actual use. When innovator WV, or KE, is greater or less than Pre-Product Introduction PE then the level of Action is expected to increase or decrease the resulting activity or adoption rate.

Protovalue Calculation: Innovator Point of Sale

(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (16*.27/4.25) + (4*0/4.25) = 4.131 Proto-value (PE) (Vector 2) Navigation : 11.2 hours * (3*0/4.75) + (16*.7/4.75) + (4*.15/4.75) = 27.85 Proto-value (PE) (Vector 3) Search: 2.4 hours * (3*.64/4.25) + (16*.36/4.25) + (4*.60/4.25) = 5.7 Proto-value (PE)

Total Product Pre-Introduction Proto-Value Day 0 - 30 = 37.66 Proto-value (PE)

Protovalue Calculation: Innovator Actual Use

(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (24*.27/4.25) + (6*0/4.25) = 5.42 Proto-value (KE)) (Vector 2) Navigation : 11.2 hours * (3*0/4.75) + 24*.7/4.75) + (6*.15/4.75) = 41..77 Proto-value (KE)) (Vector 3) Search: 2.4 hours * (3*.64/4.25) + (24*.36/4.25) + (6*.60/4.25) = 5.95 Proto-value (KE))

Total Product Pre-Introduction Proto-Value Day 0 - 30 = 53.68 Proto-value (KE)

In this example, innovator actual use (KE) of Navigation and Search was higher than expected use at Point of Sale or PE and would result in higher energy and resulting action over time.

 $\Delta A = \Delta (PE + KE) * \Delta$ Time

Phase II – Innovator Purchase and Use: Exchange **Point of Sale: Smart Phone Platform Example**

During Phase II – "Innovator Acquisition and Use", the level of activity or action can be predicted based on a change in perceived value or Proto-Value (PV) which results from an exchange.

- **PV[C, P]** = value customer assigns to the ownership of the Smart Phone
- **PV[C, M]** = value customer assigns to the ownership of his money
- **PV[B, P]** = value the business assigns to the ownership of a Smart Phone
- **PV[B, M]** = value the business assigns to the ownership of the customers money

The potential energy (protovalue) before the exchange is

 $PV_{before} = PV[C, M] + PV[B, P] = 37.66 * 2 = 75.32$

The potential energy after the exchange is

PV_{after} = PV[C,P] + PV[B,M] = 100+75.32 = 175.32 (We added 100 with the general assumption that the customer and the producer believes that they are better off by 50 more units of **Protovalue**)

The change in potential energy if the exchange happens is

```
PVx = Pv_{after} (175.32) - Pv_{before} (75.32)
PVx = 100
```

The more PV generated by an exchange the faster the exchange happens.

$\Delta A / PVx = \Delta Tx$

3rd & 4th July 2017 Assumption: At the Point of Sale we consider Proto Value as Potential Energy from the Physics Analogy. This is due to the fact that the customer has not yet used the product and thus no work value or kinetic energy has been generated.

Phase III – Imitator Purchase and Use: Exchange Point of Sale: Smart Phone Platform Example

Imitator Point of Sale PV or PE considers how unevenly distributed actual innovator use of general product solution space vectors, or observed change in KE, moderates imitator customer need vectors and resulting PV or PE.

Protovalue Calculation: Innovator Actual Use

(Vector 1) Browsing: 2.55 hours * (3*.85/4.25) + (24*.27/4.25) + (6*0/4.25) = 5.42 Proto-value (KE)) (Vector 2) Navigation : 11.2 hours * (3*0/4.75) + (24*.7/4.75) + (6*.15/4.75) = 41.77 Proto-value (KE)) (Vector 3) Search: 2.4 hours * (3*.64/4.25) + (24*.36/4.25) + (6*.60/4.25) = 5.95 Proto-value (KE))

Total Product Pre-Introduction Proto-Value Day 0 - 30 = 53.68 Proto-value (KE)

In this example, innovator actual use (KE) of Navigation (24 hours KE versus 16 hours PE) and Search (6 hours KE versus 4 hours PE) determines the customer vector lengths in hours for imitator Point of Sale.

<u>Protovalue Calculation: Imitator Point of Sale</u> Total Product Pre-Introduction Proto-Value Day 0 - 30 = 53.68 Proto-value (KE)

Assumption: For this example we assume that no changes in product features and resulting changes in General Product Solution space vectors were made after observing actual use. In many cases a producer will make additional investment in a product feature set that seek to reduce distance based on observed innovators behaviors and feedback

3rd & 4th July 2017

Phase III – Imitator Purchase and Use: Exchange Point of Sale: Smart Phone Platform Example

Intellectual Capital During Phase III – "Imitator Acquisition and Use", the level of activity or action can be predicted based on a change in the Knowledge in perceived value or Proto-Value (PV) which results from an exchange.

- **PV[C, P]** = value customer assigns to the ownership of the Smart Phone
- **PV[C, M]** = value customer assigns to the ownership of his money
- **PV[B, P]** = value the business assigns to the ownership of a Smart Phone
- **PV[B, M]** = value the business assigns to the ownership of the customers money

The potential energy (protovalue) before the exchange is

 $PV_{before} = PV[C, M] = 53.68 + PV[B, P] = 53.68$

The potential energy after the exchange is

 $PV_{after} = PV[C,P] = 91.18 + PV[B,M] = 91.18$

The change in potential energy if the exchange happens is

 $PVx = Pv_{after}$ (182.36) - Pv_{before} (107.36) PVx = 75

The more PV generated by an exchange the faster the exchange happens..

$\Delta A / PVx = \Delta Tx$

Assumption: At the Point of Sale for the imitator customer segment we consider imitator actual use, or kinetic energy, when determining PV before the exchange. PV after the exchange is the result of innovator influence on imitator perceived value of PVx for a given product solution space.

3rd & 4th July 2017

iC

Diagram 1: Calculating Proto Value: MPesa Case

Physics Analogy Equation for PE $PE = \sum_{i,j} \frac{mj \cdot Gji \cdot Mi}{Rji}$

Proto Value Matrix Calculation $PV = \sum_{i,j} \frac{n_i \cdot H_{ij} \cdot s_j}{D} = \sum_{i,j,k} n_i \cdot H_{i,j} \cdot F_{j,k} \cdot f_k / D_{ik}$

3rd & 4th July 2017