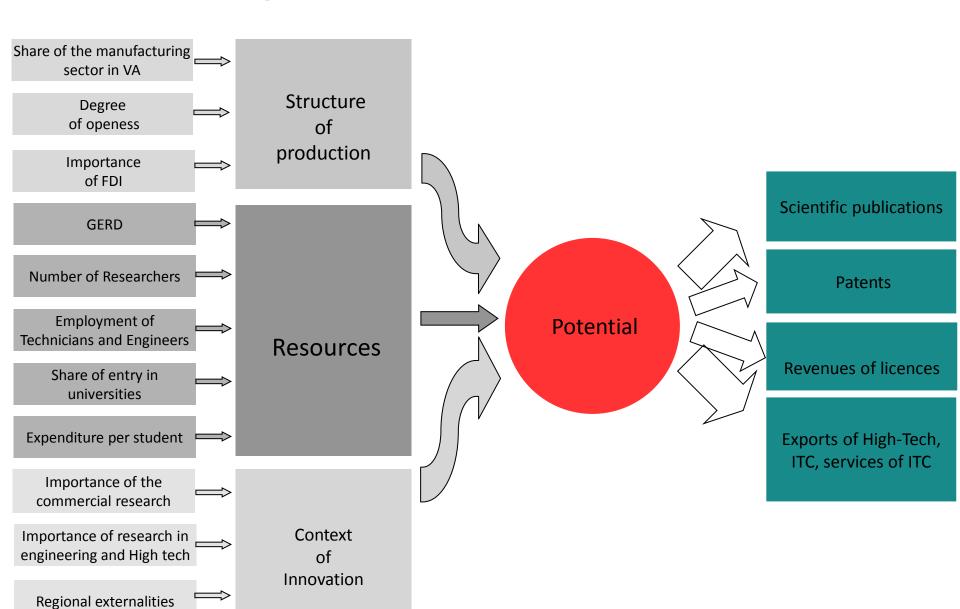


Potential developments of patents in Med Regions, *Egypt, Morocco, Tunisia*

Ahmed Bounfour
Vincent Delbecque
Tamer Taha
Walid Hadhri
Héla Masmoudi

1- The context

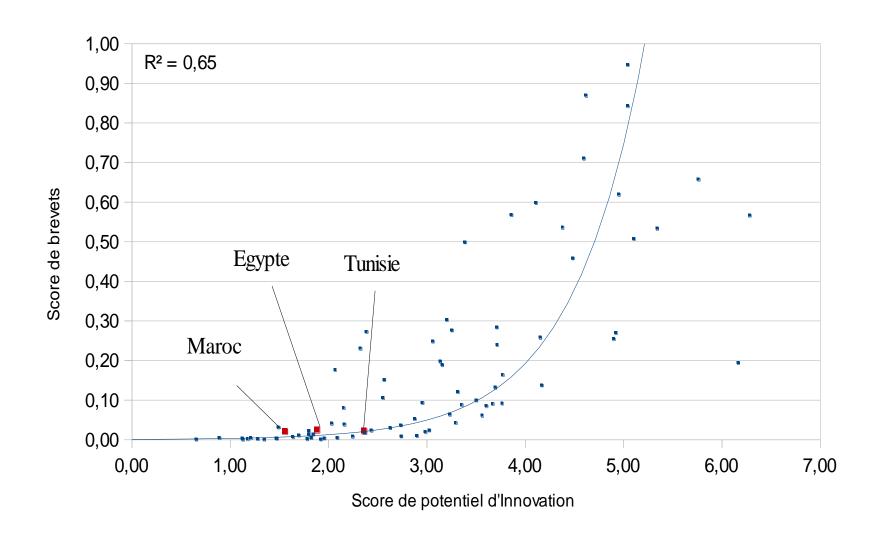
- The importance of IPRs in the development strategies of nations and firms
- The question of articulating « Hard intangibles » to « soft intangibles »
- The possible leveraging of « hard intangibles » as catalysts and accelerators of innovation policies and strategies


2-The study objectives

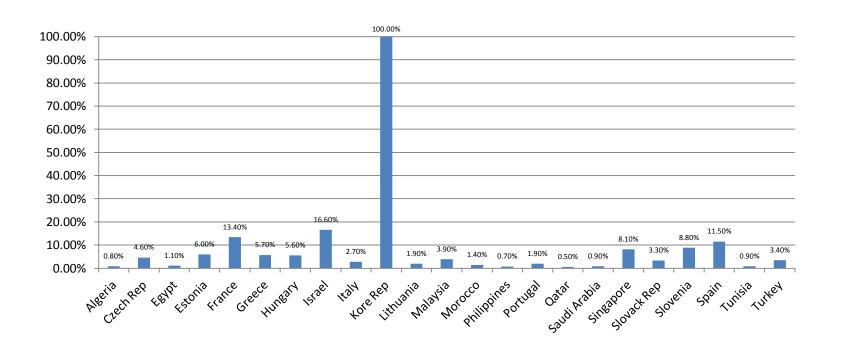
- Produce a first assessment of the patent "market" in the southern Mediterranean region
- Assess the stakes related to the innovation policy taking into account the successful experience of benchmark countries
- Propose configuration paths /scenarios and options

3- Methodology

- A documentary analysis (review of literature, analysis of reports)
- Interviews with Executive leaders and researchers of institutions, research laboratories and companies
 - -> roughly a dozen interviews in Morocco and Egypt, and a little bit more in Tunisia)
- Economic modeling in a comparative perspective


General Modelling

4- Some overall results


Estimation of contributions of production factors to patents				
Dependent variable: Log number of patents per inhabitant				
		β	Standard deviation	p-value
•	Industry	1.83	2.91	0.55
•	FDI	-0.04	0.02	0.07
•	Researchers	0.06	0.01	0.01
•	Externalities	1.57	0.17	0.01
•	Private sector	3.01	1.16	0.01
•	Number observations	38		
R ²			0.92	
«Condition index » of collinearity		9.35		

4- Some overall results

4- Some overall results

Indices of efficiency, using DEA (inputs: scores 1, 2 et 3; outputs: indices for patents

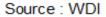
- The economic analysis highlights the determining factors of patent filings for 38 countries
- Similar to what was observed for other countries in the startup phase of their "patent" strategy, patent filing is still dominated by non-home based (foreign) companies and, as regards local filing, by individual filings.

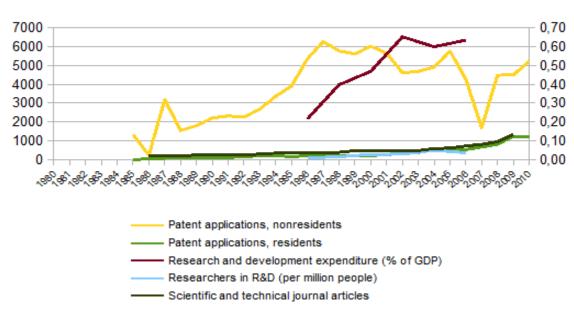
- Each country now has a legal framework aligned on the TRIPS agreements
- Each country has also recently set up several scientific and industrial programs
- Specific programs for innovative small to medium size companies were also implemented
- the national IP institutions have set up incentives and information disclosure systems relating to patents, in particular with universities

- Recent developments were observed on the part of companies working in world-scale sectors (automobile), "Global value chains"
- An approach already successfully established in other countries (Turkey from 1990 to 2000)
- The needs expressed by companies :
- the development of the intellectual property culture and incentives to setting up university – industry partnerships,
- -the appropriate tax incentives (research tax credit for instance)

- The issue of patent filing cannot be separated from the innovation and industrial competitiveness strategy
- The issue of the quality of patents granted locally and of their truly innovative nature also sometimes arose
- The aggregate amount of home-based filings of the three countries in 2010 was 870, equivalent to the number of filings in Malaysia in 2009
- This low figure testifies to the fact that the issue of the patent "market" is still at a very early stage of its development in the three countries studied

1- Turkey


- Until the end of the 90s, nearly all the patents were filed by foreign (non-home-based) companies
- This characteristic was subsequently reversed with the collapse of foreign filings and the increase in home-based filings which grew tenfold from 2000 to 2009, reaching 2555 patents filed
- The number of utility models also increased significantly going from 38 in 1995 to 3174 in 2011
- The quality of the innovation and patent dynamic of Turkish homebased companies
- This number went from 6 in 1995 to 150 in 2010 with the USPTO and from 1 to 284 with the European Patent Office over the same period.


2- Malaysia

- Home-based patents, nearly non-existent in the mid eighties, exceeded the 500 mark in 2004 and the 1000 mark in 2009.
- There have always been more foreign patents than home-based but the gap has been decreasing since 1997 from 6000 to 5000 today
- On the international front, the number of patents filed with the USPTO went from 5 in 1998 to 373 in 2010.
- Malaysian filers file relatively few patents with European, Japanese and Korean patent offices
- These figures also include the utility models. The patent/utility model distinction is not available from the Malaysian intellectual property bureau.

2- Malaysia

Brevets, publications et ressources allouées - Malaisie

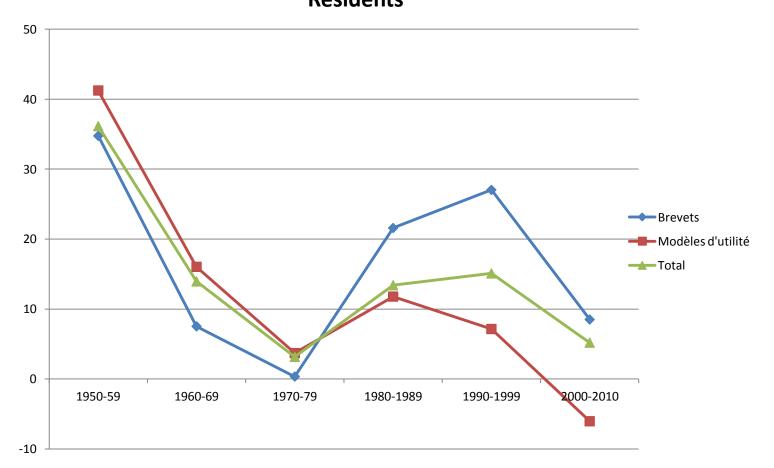
3- South Korea

A big success, marked by 4 stages:

- Before 1970: A weak technological base of local inventors and a weak flow of foreign technology
- Mid-seventies to mid-eighties: An accumulation of technological capacity through foreign technology flows. The domination of foreign inventors and individual inventors,
- Mid-eighties to mid-nineties: accumulation of a local technology base, strong growth in local filings and the domination of companies over individual inventors
- Mid-nineties, accumulation of the technology base via R&D, strong promotion of IP and aid to filing patents abroad.

Source: Keun Lee

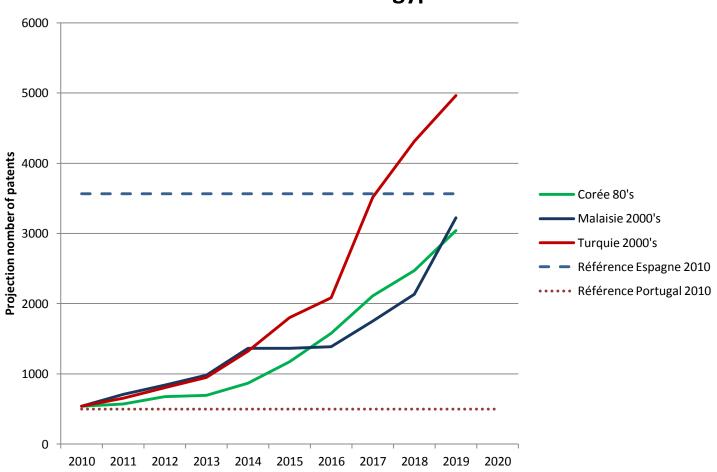
South Korea


Annual growth of patents and utility models, South Korea, 1950-2010 Residents and Non-residents

South Korea

Annual growth of patents and utility models, South Korea, 1950-2010

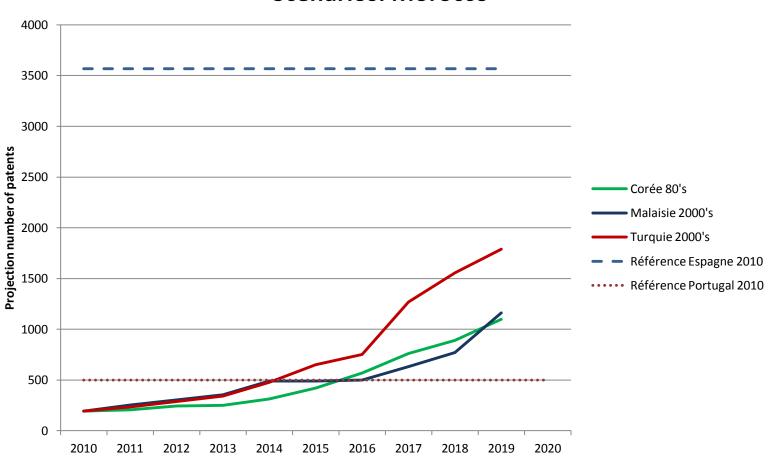
Residents



- The development of patent filings more or less mirrors the growth of the share of R&D in the country's GDP
- Several lessons can be drawn from this observation:
- The importance of utility models in the development of innovation and the accumulation of technology
- The importance of a dynamic approach to innovation
- The importance of considering the protection system as an integral part of the national innovation system

Egypt

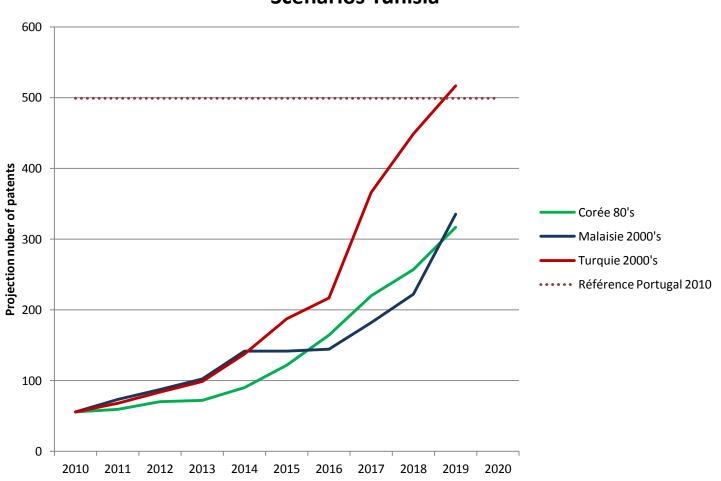
 The application of the benchmark scenarios to Egypt leads to estimates of 3000 to 5000 patents in 2020.
 These levels are comparable or higher than those of Spain currently.


Potential market in number of patents

- The Turkish scenario appears to be the most favorable: roughly 5,500 home-based patents by 2020 compared to slightly less than one thousand currently
- The patent filing market would thus stand at about 5000 patents (Residents) for the three countries.

Morocco

 It is anticipated that the replication of the takeoff scenarios of Turkey, South Korea and Malaysia in Morocco would yield roughly 1000 to 2000 home-based patents by 2020, or two to three times more than in Portugal in 2010, but less than Spain (roughly 3500 in 2010).

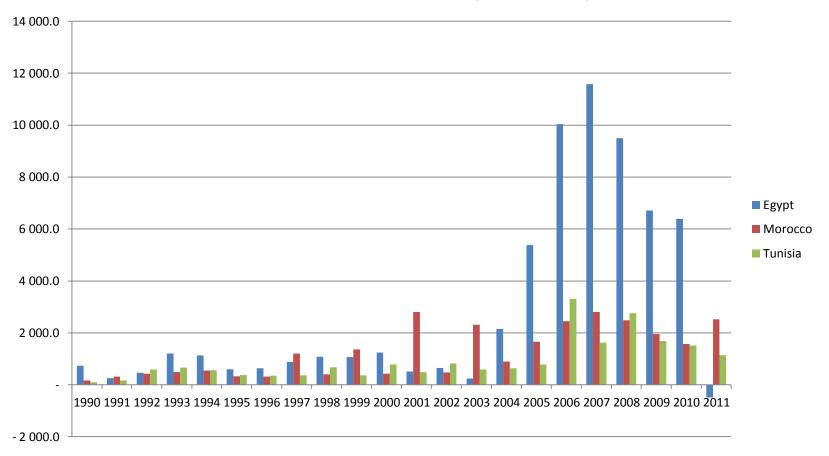


Tunisia

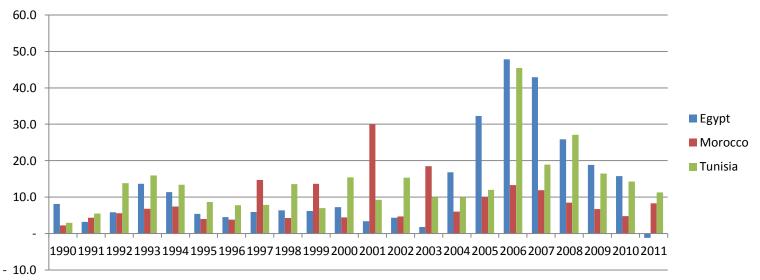
- The most positive scenario is that of Turkey after 2000 which would lead in 2020, to a home-based patent filing rate equivalent to that of Portugal today (about 500).
- The Korean and Malaysian scenarios allow the number of patents filed in 2020 to be estimated at 300
- In all, it can be reasonably expected that the potential for development of home-based patents would be 300 to 500 per year by 2020

8- OPTIONS

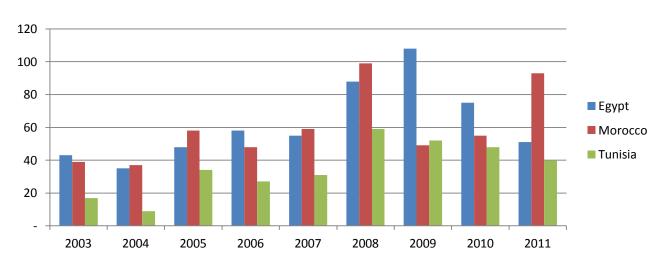
Two complementary strategies:


- 1. The development of innovation hubs positioned in global industries: automobile, aeronautics, mechanics, materials, chemicals, software, bio/nanotechnologies etc.
- Low cost technology/product innovation streams (a <u>Logan strategy</u> for patents).

8-Options


1-The development of innovation hubs positioned in global industries : World-scale Platforms

FDI Inflow for the three countries, Millions US \$ (1990-2011)



FDI inflow as percentage of GFCF for the three countries

8-Options

Number of greenfields FDI projects, 2003-2011

8-Options

2-The Development of Innovative Capability Intended for Local and Regional Needs: The "Logan Strategy" (in particular in Africa)

- The development of quick, low-cost innovations centered on the fundamental needs of the population: the management of water, energy and food.
- The approach here is one of developing self-sufficient scientific and technical capabilities

Adopting a utility model type approach for this type of development would be of interest.

8-Options

A policy and technical instrument

The "Med patents workshops"

9- Conclusion:

Patents and strategic innovation policy

- « Hard » intangibles versus « Soft » intangibles : the two facettes of the transformation of national innovation systems
- Hard intangibles might be used as catalysts for forstering innovation: Korea did it, China is doing it
- The cognition dimension: Hard intangibles are easy to understand they are the most tangible intangibles!

Thank you for your attention